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Abstract
Motivation and aim: Soil biodiversity is central to ecosystem function and services. 
It represents most of terrestrial biodiversity and at least a quarter of all biodiversity 
on Earth. Yet, research into broad, generalizable spatial and temporal patterns of soil 
biota has been limited compared to aboveground systems due to complexities of the 
soil system. We review the literature and identify key considerations necessary to 
expand soil macroecology beyond the recent surge of global maps of soil taxa, so that 
we can gain greater insight into the mechanisms and processes shaping soil biodiver-
sity. We focus primarily on three groups of soil taxa (earthworms, mycorrhizal fungi 
and soil bacteria) that represent a range of body sizes and ecologies, and, therefore, 
interact with their environment at different spatial scales.
Results: The complexities of soil, including fine-scale heterogeneity, 3-D habitat 
structure, difficulties with taxonomic delimitation, and the wide-ranging ecologies of 
its inhabitants, require the classical macroecological toolbox to be expanded to con-
sider novel sampling, molecular identification, functional approaches, environmental 
variables, and modelling techniques.

www.wileyonlinelibrary.com/journal/geb
mailto:﻿
https://orcid.org/0000-0002-6793-8613
https://orcid.org/0000-0002-5870-2537
https://orcid.org/0000-0001-7982-5993
https://orcid.org/0000-0003-0098-7960
mailto:hannah.white@ucd.ie
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgeb.13156&domain=pdf&date_stamp=2020-08-02


2  |     WHITE et al.

1  | INTRODUC TION

Macroecology strives to understand the generality of emergent pat-
terns of aggregate ecological entities (McGill,  2019). The area has 
moved beyond large-scale biodiversity maps for many aboveground 
taxa, addressing process-based patterns including latitudinal gra-
dients of diversity (Stehli, Douglas, & Newell,  1969), species–area 
relationships (Rosenzweig,  1995), species–energy relationships 
(Gaston,  2000) and broad scale responses of diversity to anthro-
pogenic pressures (Newbold et  al.,  2015), across spatial and tem-
poral scales. There are, however, still significant knowledge gaps 
surrounding many questions of macroecology and biogeography, 
and new techniques to investigate these, in soil ecology (Eisenhauer 
et al., 2017).

Soil biodiversity regulates nutrient cycling and makes other 
central contributions to net primary production and carbon se-
questration (Bardgett & Wardle, 2010; Wagg, Bender, Widmer, & 
van der Heijden,  2014) across spatial scales (Delgado-Baquerizo 
et al., 2020). Given the importance of soil biodiversity, knowledge 
of spatial and temporal distributions of soil organisms is essen-
tial for both management of terrestrial ecosystems and predicting 
future ecosystem functioning under global environmental change 
(Crowther et al., 2019; Wagg et al., 2014). Recently, there has been 
an increased interest in describing the generality of emergent 
patterns of soil biodiversity (e.g., Shade et al., 2018; Shoemaker, 
Locey & Lennon, 2017; Thakur et al., 2019), although difficulties 
in observing many soil organisms directly has limited this. Further, 
it has been challenging to formulate a common macroecological 
framework across soil taxa given the sheer range in body sizes and 
ecologies, from bacteria to macrofauna, which vary in the scale 
at which they perceive the environment. Methodological and tax-
onomic challenges have hindered macroecological research into 
belowground systems concerning species richness, spatial distri-
butions, ecosystem functioning and spatial scaling (Decaëns, 2010; 

Schröder, 2008; Shade et  al.,  2018). The challenges of soil mac-
roecology, therefore, arise not only across spatial and temporal 
scales, but also across the organizational hierarchy of species, 
communities and ecosystems.

At a species level, species distribution models (SDMs) are fre-
quently employed to relate the spatial distribution of aboveground 
species to their environment (Elith & Leathwick,  2009), yet, there 
are very few examples of SDMs applied to soil-dwelling species 
other than earthworms (e.g., Marchán et al., 2015; Palm, van Schaik, 
& Schröder, 2013). For many soil taxa, this is a result of not having 
sufficient species-level occurrence data from various geographical 
locations spanning environmental gradients at relevant spatial scales 
(Schröder, 2008). For other taxa (i.e., Collembola, but see Caruso, 
Hogg, Carapelli, Frati, & Bargagli, 2009) these data are already avail-
able, which begs the question of why the modelling of belowground 
species distributions has been so limited. There is, therefore, a huge 
opportunity to expand soil macroecological research through spe-
cies distributions modelling, as long as we are able to overcome the 
challenges of the soil system itself.

Community biodiversity patterns include well-established mac-
roecological relationships, such as the species–area relationship and 
latitudinal gradients (e.g., Rosenzweig, 1995), distance-decay curves 
(Nekola & White, 1999), as well as models linking biodiversity pat-
terns to environmental variables such as the species–energy rela-
tionship (e.g., Evans, Newson, Storch, Greenwood, & Gaston, 2008). 
These relationships have formed the basis of macroecological theory 
and our knowledge of how diversity is arranged in space and time, at 
a range of spatial, temporal and hierarchical scales. Although com-
munity assembly in soil organisms has been investigated (Caruso, 
Taormina, & Migliorini, 2012; Dirilgen, Juceviča, Melecis, Querner, 
& Bolger, 2018), generalizable spatial and temporal patterns of soil 
biodiversity have yet to be determined to the degree that they have 
above ground (but see Caruso, Schaefer, Monson, & Keith, 2019). For 
microbes in particular, studies have tended to focus on individual 

Main conclusions: Soil provides a complex system within which to apply macroeco-
logical research, yet, it is this property that itself makes soil macroecology a field 
ripe for innovative methodologies and approaches. To achieve this, soil-specific data, 
spatio-temporal, biotic, and abiotic considerations are necessary at all stages of re-
search, from sampling design to statistical analyses. Insights into whole ecosystems 
and new approaches to link genes, functions and diversity across spatial and temporal 
scales, alongside methodologies already applied in aboveground macroecology, inva-
sion ecology and aquatic ecology, will facilitate the investigation of macroecological 
processes in soil biota, which is key to understanding the link between biodiversity 
and ecosystem functioning in terrestrial ecosystems.
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taxa and metabolic genes, yet, it is the emergent properties of com-
munities that influence ecosystem functioning and services (Ladau 
and Eloe-Fadroush, 2019), and, therefore, need to be considered if 
we are to expand the field of soil macroecology.

At the ecosystem level, there have been huge advancements 
in our ability to model whole ecosystem functioning, particularly 
within the context of global change (Allan et al., 2015; De Laender 
et  al.,  2016). The development of measures of functional diver-
sity (the range and variation of ecological traits present within 
an area) has facilitated this. Aboveground, these measures have 
been used to investigate key conservation issues such as bi-
otic homogenization (White, Montgomery, Storchová, Hořák, & 
Lennon, 2018). Given the importance of soil and soil biodiversity 
in ecosystem functioning and global cycles (Delgado-Baquerizo 
et al., 2020), functional traits have much to offer soil macroecol-
ogy. The measurement of functional traits is becoming increas-
ingly feasible from a technical perspective (e.g., proteomics and 
isotope tracer-enabled analysis of proteins and metabolites, trait 
database availability), and they can be directly linked to ecosystem 
level processes (Hooper et al., 2005). There is a need, therefore, 
to continue to develop methods to measure functional diversity 
and broad scale functioning of soil organisms, and understand, for 
example, how these respond to environmental gradients. Applied 
properly to soil organisms, macroecological approaches will pro-
vide us with another tool to tackle global challenges related to soil 
functioning and soil protection.

2  | AIMS AND SCOPE OF THIS RE VIE W

To move beyond mapping of soil taxa in space and identify broad, 
generalizable spatial and temporal patterns of soil biodiversity and 
their underlying mechanisms, we need to consider: the biodiversity 
data; the spatio-temporal context of the system and mechanisms 
under investigation; the biotic components shaping these patterns; 
and the abiotic components shaping these patterns. We discuss each 
of these sets of considerations and review current methods and fu-
ture directions for each. Our intention is not to provide a systematic 
review of macroecological patterns of multiple soil taxa, but instead, 
to focus on the specific characteristics of the soil system that have 
limited soil macroecology, and review and propose methods that 
would help address these limitations. To accomplish this, we use 
earthworms, mycorrhizal fungi and soil bacteria as focal taxa. These 
groups have all had their global biodiversity modelled (earthworms, 
Phillips et al., 2019; fungi, Kivlin, Hawkes, & Treseder, 2011; Pärtel 
et al., 2017; Tedersoo et al., 2014; soil bacteria, Delgado-Baquerizo 
et al., 2018), and they reflect the diversity of taxa that inhabit soil 
through their variation in body size, life-forms and ecology, which 
leads to differences in the spatial scale at which they perceive and 
interact with their environment. They, therefore, provide a range 
of robust examples of the issues that have hindered soil macroeco-
logical research to date, and the diversity in approaches required to 
overcome these difficulties.

3  | DATA CONSIDER ATIONS

3.1 | Data availability

Initiatives exist to establish standardized sampling protocols to col-
lect new data on soil biodiversity (Philippot, Ritz, Pandard, Hallin, & 
Martin-Laurent, 2012), for example, the Earth Microbiome Project 
(Thompson et  al.,  2017) and EcoFINDERS (Lemanceau,  2011), as 
well as bring together existing soil biodiversity data (see Table 1) into 
accessible databases and frameworks, for example, the Global Soil 
Biodiversity Initiative (www.globa​lsoil​biodi​versi​ty.org) and Ramirez 
et al. (2015). Pärtel et al. (2017) use a standardized data set of meta-
barcode information (MaarjAM database, Öpik et al., 2010) to model 
spatial variation in species pool, local and dark diversity (members of 
the species pool that are absent locally) alongside their respective 
environmental correlates. These standardized data provide a suit-
able means for investigating large-scale biodiversity patterns (e.g., 
species–area relationships, latitudinal gradients etc.), and, in fact, 
better satisfy the criteria of comparability across sites and studies 
than many data sets of macro-organism distributions, which show 
large variation in sampling methodology and effort.

The Global Soil Biodiversity Initiative and Ramirez et al. (2015), 
on the contrary, aim to maximize the potential of existing data by es-
tablishing global platforms that combine databases of all types of soil 
biodiversity data, including molecular, taxonomic, and morphological 
measurements and traits. Assembling data from multiple sources is 
complicated due to variability in taxonomic resolutions, unresolved 
taxonomies (Cameron, Decaëns, Lapied, Porco, & Eisenhauer, 2016) 
and lack of standardization of sampling techniques that cause tech-
nical factors (e.g., sampling protocol, primer and sequencing plat-
form) to be an important source of inter-study variability (Ramirez 
et  al.,  2018). Some studies choose to only include data collected 
using specific methodologies to reduce inter-study variability (e.g., 
European earthworm diversity maps, Rutgers et  al.,  2016, 2019), 
yet, non-standardized data sets can still provide important global 
insights into the ecological preferences and geographical ranges of 
species (Ramirez et al., 2015). These data will complement standard-
ized sampling protocols when analysed appropriately, for example 
using meta-analytical or machine learning approaches (Hendershot, 
Read, Henning, Sanders, & Classen,  2017; Ramirez et  al.,  2018). 
Substantial geographical gaps in sampling, however, need to be ad-
dressed (Cameron et al., 2018) if we are to determine generalizable 
patterns of biodiversity, and model predictions should be refined 
and updated as empirical data sets become increasingly available.

3.2 | Measuring and defining soil biodiversity

To study many macroecological patterns such as species-abun-
dance distributions, species–area relationships and latitudinal gra-
dients, we first need to identify the species. However, challenges 
remain with identification of many soil taxa (Soininen,  2012); the 
huge diversity of soil organisms, combined with their small size 

http://www.globalsoilbiodiversity.org
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(Schaefer, Norton, Scheu, & Maraun, 2010), has led to a distinct lack 
of taxonomic knowledge of soil biodiversity (Decaëns, Lavelle, & 
Jiménez, 2008; Phillips et al., 2017). Biogeographical realms at mul-
tiple spatial scales, therefore, exist where every new place sampled, 
especially remote locations, can give huge volumes of undescribed 
species or sequences that cannot be matched to any known spe-
cies or genus-level taxon (Decaëns, 2010; Fierer, 2017). Indeed, even 
urban systems such as Central Park in New York City, can harbour 
large volumes of undescribed soil biodiversity (Ramirez et al., 2014), 
and earthworms, a comparatively well-studied group with relatively 
low diversity, have had a large number of cryptic species revealed 
through DNA barcoding (King, Tibble, & Symondson, 2008).

Gene-based diversity assessments of environmental DNA 
(eDNA) are a promising toolset for facilitating large-scale sampling 
of soil diversity (Bik et al., 2012; Deiner et  al.,  2017). Species can 
be identified using short metabarcodes and small samples of soil 
(e.g., earthworms, Bienert et al., 2012). eDNA has already furthered 
macroecological research, for example, through the detection of 
earthworm diversity at the landscape scale, revealing impacts of abi-
otic factors not detected using traditional survey methods (Pansu 
et al., 2015). Nevertheless, the degree to which eDNA-based diver-
sity estimates capture the living soil biota (rather than ‘relic’ DNA) is 
unclear (Lennon, Muscarella, Placella, & Lehmkuhl, 2018; Ruppert, 
Kline, & Rahman, 2019). Furthermore, this technique can vary with 
soil organic matter content and type, complicating the comparison 
of biodiversity patterns across environments and highlighting the 
continued, pressing need for the standardization of methodologies 
(Geisen et al., 2019; Philippot et al., 2012).

In particular, many molecular studies use targeted sequencing 
of specific marker genes or gene regions, which serve as ‘barcodes’. 
Sequence differences within the ‘variable regions’ of the marker 
genes are used to identify operational taxonomic units (OTUs), which 
may serve to delineate taxa below the genus level (e.g., earthworms, 
Pansu et al., 2015; fungi, Pellissier et al., 2014; Tedersoo et al., 2014). 
However, there is no universal threshold for an eukaryotic OTU, and 
this may well be clade-specific, and dependent on the barcode length 
and region of choice (Mysara et al., 2017). Despite recent techno-
logical advances in sequencing and bioinformatic pipelines to pro-
cess high-throughput amplicon sequences, considerable challenges 
remain when using gene-based methodologies (Nesme et al., 2016). 
Errors or biases can arise from different DNA extraction methods 
(İnceoǧlu, Hoogwout, Hill & van Elsas, 2010), primer specificity, se-
quencing chemistries (i.e., short read length, Tedersoo et al., 2015; 
Tremblay et  al.,  2015), and bioinformatic processing, as well as 
difficulties with OTU delimitation and chimeras (Orgiazzi, Dunbar, 
Panagos, de Groot, & Lemanceau, 2015), and lack of matching current 
database entries (e.g., fungi; Tedersoo et al., 2014, bacteria; Ramirez 
et al., 2014; Thompson et al., 2017). These can confound diversity 
estimates in cross-study comparisons (Fierer,  2017; Thompson 
et  al.,  2017). Recent developments in clustering algorithms, that 
is, a reference-free approach to resolve sequence variants at a sin-
gle nucleotide resolution (Callahan, McMurdie, & Holmes,  2017; 
e.g., Deblur, Amir et al., 2017), could offer stable identifiers across TA
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different studies (Thompson et al., 2017), facilitating data reusability 
and integration of multiple data sets (Amir et al., 2017), thus, max-
imizing the potential of gene-based surveys in soil macroecology 
(Geisen et al., 2019). Alternatively, DNA-targeted enrichment (bait 
capture) allows more efficient recovery of sequence information, 
not relying on sequence affinity as strongly as PCR (Dowle, Pochon, 
Banks, Shearer, & Wood, 2016). DNA enrichment can be applied to 
a range of different sample sources, in individual or pooled samples 
and can be used for recovering exogenous DNA present in environ-
mental samples (Shokralla et al., 2016).

Many studies now focus on alternative dimensions of biodiver-
sity to taxonomic diversity. Functional diversity, which measures 
the diversity and range of traits within a community, can be closely 
linked to ecosystem functioning (Heemsbergen et al., 2004; Hooper 
et al., 2005). Shifting from taxonomic to functional information can 
provide a way to unify the study of soil macroecology: the units 
are no longer species, or taxa, but functions and the diversity of 
functions expressed, which are relevant across taxonomic groups. 
Macroecological patterns that emerge from traits include trait–
area and –time relationships (e.g., White, Montgomery, Pakeman, 
& Lennon, 2018), and functional diversity gradients (e.g., Meynard 
et al., 2011), which further our knowledge on the spatial, temporal 
and environmental structuring of ecological traits and ecosystem 
functioning (Violle, Reich, Pacala, Enquist, & Kattge, 2014), and pro-
vide new insights into community assembly theory (Smith, Sandel, 
Kraft, & Carey, 2013). Due to the key ecosystem functions that soil 
biodiversity provides (Heemsbergen et  al.,  2004), we advocate a 
concerted shift towards functional approaches within soil macro-
ecology through the following methodological and data options.

Trait databases facilitate the investigation of trait composition 
of soil communities. Morphological, physiological and phenological 
traits are present in the literature for many soil invertebrates due 
to their relative ease of measurement (e.g., carabid beetles, Barbaro 
& van Halder,  2009; earthworms, Hedde et al., 2012; Collembola, 
Bonfanti et al., 2018; Martins da Silva et al., 2016; ants, Bishop 
et al., 2016). For soil bacteria and fungi, on the contrary, characteri-
zation of morphological, physiological and phenological traits can be 
more challenging since isolation of individual species for trait mea-
surements is not feasible in most cases (Krause et al., 2014; Zanne, 
Powell et al., 2020). Two recently published, large global databases, 
FungalRoot (Soudzilovskaia et al., 2020) and the Fungal Functional 
Database (FUNfun, Zanne, Abarenkov et  al.,  2020), however, will 
facilitate better understanding of trait composition of fungal com-
munities, their interactions with plants, and their effects on world-
wide ecosystem functioning (Powell & Rillig,  2018). However, as 
with many taxa, fungal trait databases are often incomplete (Zanne, 
Abarenkov et  al.,  2020). There has also been a concerted effort 
to quantify microbial functions in soil due to their importance for 
key ecosystem functions (Aguilar-Trigueros et  al.,  2015; Zanne, 
Abarenkov et al., 2020) through standardized ‘omics’ and enzymatic 
approaches (Dawson et al., 2019), as well as the measurement of cli-
mate tolerances to investigate life history trait trade-offs at large 
spatial scales (Maynard et al., 2019).

‘Omic’-based functional analyses (e.g., proteomics, metabolo-
mics) have been used to determine broad scale patterns in fungi 
(Tedersoo et al., 2014) and bacteria (Delgado-Baquerizo et al., 2018; 
Fierer & Jackson, 2006). These methods enable the categorization 
of soil microbes by their ecological strategies (e.g., Fierer,  2017), 
therefore, bypassing the taxonomic deficit problem and focusing 
on functional diversity. Functional ‘omics’ approaches can be used 
in experimental community ecology studies to provide informa-
tion on potential ecosystem functioning (Maron, Ranjard, Mougel, 
& Lemanceau, 2007), such as the diversity of protein-coding gene 
categories, for example, antibiotic resistance genes and osmoregula-
tory genes (Bahram et al., 2018; Fierer et al., 2012), and soil enzyme 
substrate specificity (Caldwell, 2005) in nutrient cycling, as well as 
community structure and dynamics within the soil (Arsène-Ploetze, 
Bertin, & Carapito,  2015). Unlike gene-based approaches, pro-
tein-based ‘omic’ approaches (metaproteomics) capture the active 
component of soil biomass (Blagodatskaya & Kuzyakov, 2013), and 
thus, avoid overestimating diversity from dormant or dead biomass 
(Carini et al., 2016; but see Papp et al., 2018).

Despite limitations (i.e., transcriptomics may reveal potential, 
rather than fulfilled functions, Prosser,  2015), elucidating the un-
derlying molecular mechanisms supporting functions could help to 
unlock the functional networks that interact to sustain soil prop-
erties (e.g., Bonfante & Genre, 2010). Semi-controlled experiments 
can build novel bridges with complex natural systems. For example, 
we recommend mesocosm experiments coupled with ‘omics’ ap-
proaches designed to identify longitudinal biological responses of 
soil biota to microbiomes (e.g., soil and rhizosphere) and plants, al-
though destructive sampling is a limitation. Further still, defining a 
global transcriptome-based delineation of functional entities, and 
obtaining a landscape of their similarities and differences based on 
differential expression of genes across different combinations of hi-
erarchical levels and abiotic factors, for example, could help to de-
rive the sets of genes involved in specific ecological processes that 
could be targeted in the field using metagenomics as a ground-truth-
ing approach. Integrating multiple ‘omic’ approaches, therefore, into 
community studies will lead to a rapid transformation in our empir-
ical understanding of soil functioning and interactions (Swenson & 
Jones,  2017), and complementary approaches to DNA sequenc-
ing remain a priority for soil biodiversity research (Eisenhauer 
et al., 2017) as they will reveal new information on the mechanisms 
underlying ecosystem processes.

4  | SPATIO -TEMPOR AL CONSIDER ATIONS

4.1 | Scale and structure

Intra- and interspecific aggregations (Ettema & Wardle, 2002), which 
result from the microscale heterogeneity of the soil system and lim-
ited dispersal of organisms, structure soil communities across spa-
tial scales (Bach, Williams, Hargreaves, Yang, & Hofmockel,  2018; 
Decaëns, 2010; Noguez et al., 2005; Thakur et al., 2019). In a Brazilian 
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agricultural system, for example, geographical distance explained 
nearly 18 times more variance in soil fungal community composition 
than environmental factors such as soil and climate characteristics 
(Gumiere, Durrer, Bohannan, & Andreote,  2016). Biogeography of 
soil bacteria has been investigated at a range of scales from conti-
nental and global scales (e.g., Bahram et al., 2018; Barberán, Bates, 
Casamayor, & Fierer, 2012; Fierer & Jackson, 2006) to the landscape 
scale (Bru et al., 2011; Pasternak et al., 2013), and even at the cen-
timetre scale (O’Brien et  al.,  2016). By taking multiple soil cores 
separated by only a few centimetres at sampling plots spaced 6 m 
apart, O’Brien et al. (2016) showed that there was extreme patchi-
ness in community structure at the centimetre scale, but more gen-
eral patterns in diversity, linked to fertilization, were observed at the 
plot-level. This scale-dependent heterogeneity arises from the op-
erating scale of mechanisms underlying community assembly. This 
needs to be accounted for in sampling design for investigations of 
spatial patterns of soil diversity with multiscale sampling protocols 
(e.g., Rasmussen et al., 2018). Additionally, macroecological analyses 
of soil diversity need to use techniques that model space, such as 
autoregressive models (Beale, Lennon, Yearsley, Brewer & Elston, 
2010), to address the strong spatial structuring in soil ecosystems, 
as demonstrated by spatial analyses of earthworm abundance, bio-
mass and diversity (Joschko et al., 2006), and ectomycorrhizal fungi 
(Pickles et al., 2010). Similarly, techniques such as principal coordi-
nates of neighbourhood matrices (PCNM) are useful in differentiat-
ing between spatial and environmental structuring of communities 
at different spatial scales (e.g., Columbian earthworm communities, 
Jiménez, Decaëns, Lavelle, & Rossi, 2014).

The scale at which similar processes act varies between taxo-
nomic groups due to variation in body size and life history, and is an 
important consideration when studying spatial patterns of soil com-
munities (Montagna et  al.,  2018). When studying landscape scale 
processes, Jackson and Fahrig (2012) highlight the concept of the 
‘scale of effect’ (the scale at which an ecological response is best 
predicted by the habitat structure) and recommend sampling areas 
far enough apart to ensure sample points are independent (i.e., taxa 
in one sample point do not directly interact with those in others). 
Thakur et  al.  (2019) present a conceptual framework splitting soil 
into spatial compartments at which different nested groups of soil 
organisms can be studied to test biodiversity theories: soil, where 
all size groups of organisms can be sampled; hotspots (rhizosphere 
and drilosphere), where meso- and microfauna can be sampled; 
and microsites (root tips and aggregates), where microfauna can 
be sampled. This compartmentalization allows integration of body 
size into the investigation of classical ecological theory. Beyond 
simply considering ‘scales of effect’ and spatial compartmentaliza-
tion, we suggest researchers further draw upon work on investigat-
ing scaling issues in complex landscapes to build on the conceptual 
framework of Thakur et al. (2019) and inform sampling designs. For 
example, the problem of ‘coarse-graining’ occurs when fine scale 
information is aggregated to larger scales to reduce model com-
plexity (Newman, Kennedy, Falk, & McKenzie,  2019). By tracking 
how this leads to loss of information explicitly and investigating 

scaling relationships, corrections for statistical biases may be possi-
ble (Newman et al., 2019; Wu, 2004).

The species–area relationship is a classical macroecological rela-
tionship that is well established in aboveground biota. Judas (1988) 
applied the species–area relationship to published data on European 
lumbricid earthworm diversity, revealing a lower scaling exponent 
than those established in aboveground systems. One approach to 
investigate species–area relationships for ectomycorrhizal fungi is to 
use tree ‘islands’ of host plants, which, due to their obligate symbio-
sis, create an island species–area relationship (Peay, Bruns, Kennedy, 
Bergemann, & Garbelotto, 2007). This approach, however, may not 
be transferable to other microbial organisms. Taxa–area relation-
ships have also been applied to soil bacteria and fungi using samples 
taken from the corners of four nested quadrats (Sayer et al., 2013). 
This method, however, is likely to underestimate diversity at each 
quadrat size as it is only partially sampled and will be more repre-
sentative of a taxa–areal extent relationship. It does, however, still 
provide a useful study design to investigate key macroecological 
patterns of spatial scaling and turnover of community composition 
of multiple soil taxonomic groups.

As well as accumulation in space, temporal accumulation of 
species is an important part of macroecology, and community turn-
over and can be investigated using the species–time relationship. 
In aboveground literature, the species–time relationship has been 
studied far less frequently than the species–area relationship (White 
et al., 2006), and belowground, this lack of studies is even more pro-
nounced (Ladau & Eloe-Fadrosh, 2019). The temporal component of 
soil biodiversity, however, is critical to consider. As well as hotspots 
of diversity, Kuzyakov and Blagodatskaya (2015) highlight ‘hot mo-
ments’ of soil microbial diversity, which can occur either occasionally 
or regularly as a component of periodic processes within a system, 
often dependent on the temporally dynamic input of C into soil. 
Additionally, species interactions operate at multiple temporal scales 
and vary within and between taxa. For example, the connectivity 
of soil networks on abandoned arable land varies temporally during 
restoration (Morriën et al., 2017). Hence, for temporal questions, 
sampling is required at temporal scales relevant for the organisms 
of interest and the ecosystem properties with which they interact 
(Bardgett, Bowman, Kaufmann, & Schmidt, 2005; De Deyn & Van 
der Putten, 2005; Ettema & Wardle, 2002). However, the appropri-
ate scale remains an outstanding question in temporal biodiversity 
change of most soil organism groups (Eisenhauer et al., 2017; Shade 
et al., 2018). We, therefore, recommend sampling at multiple time-
scales depending on the question at hand to determine the temporal 
scales at which soil biodiversity varies, from macroevolutionary in-
vestigations (e.g., Schaefer & Caruso, 2019) to short-term dynamics 
(Kuzyakov & Blagodatskaya, 2015).

4.2 | Dimensionality

To date macroecological patterns have been primarily conceptual-
ized in a 2-D context (e.g., species–area relationships, distance–decay 



     |  7WHITE et al.

relationships in geographical space, latitudinal gradients). However, 
where depth and/or height have a strong influence on the biodiver-
sity estimates and community dissimilarity (e.g., marine systems, 
tropical forests and soils), there is much to be gained by explicitly ex-
tending these macroecological concepts to a third dimension. Given 
that soil community composition varies strongly with soil depth (e.g., 
fungi and bacteria, Eilers, Debenport, Anderson, & Fierer,  2012; 
Fierer, Schimel, & Holden, 2003; ants, Wong & Guénard, 2017; mi-
crofauna, Pausch et al., 2018), and key ecosystem processes are reli-
ant on sub-soil fauna at different depths (Rumpel & Kogel-Knabner, 
2011; Ward et al., 2016), the integration of depth as a third dimension 
into macroecological theory is a key area to which soil ecologists can 
contribute. Expanding soil macroecology into this third dimension 
will be particularly important for obtaining comparable estimates of 
true soil diversity, for example through extension of species accu-
mulation curves to depth profiles. Furthermore, it will enhance our 
understanding of species–environment relationships, and provide 
insights into interaction dynamics in 3-D space. In order to do so, 
state-of-the-art sampling designs and modelling approaches will be 
required.

To address these questions it is essential that both soil biota and 
abiotic properties be sampled across depth profiles. For macrofauna, 

sampling must involve multiple methods (e.g., pitfall trapping, direct 
sampling, Berlese extraction, subterranean baiting) as each is known 
to capture different species (Figure 1). For example, in a review of 
sampling methods Wong and Guénard (2017) identified seven stud-
ies in which more than 10% (range 12.3 to 44.4%) of all ant species 
recorded were unique to subterranean samples, and would have 
been missed with conventional sampling methods. For smaller mac-
ro-organisms, such as collembolans and arthropods, core samples 
provide samples from across the depth profile, but these must be 
carefully sorted to maintain information on sample depths as com-
bining multiple soil depths into a single sample can homogenize mi-
croscale variation (Grundmann et al., 2001). For microbial organisms, 
microsampling of smaller soil quantities across the depth profile is 
advised (e.g., Dechesne et al., 2003), or 2-D images of soil thin sec-
tions at multiple depths can be used to count bacterial cell distri-
butions and construct 3-D distributions (Raynaud & Nunan, 2014). 
Sampling of root-associated species, such as mycorrhizal fungi, may 
be facilitated by incorporating information on the depth distribution 
of roots (e.g., Sosa-Hernández, Roy, Hempel, & Rillig, 2018). Depth 
distributions of many taxa can vary seasonally, for example, some 
earthworm species aestivate in lower soil layers during the sum-
mer (Gerard, 1967). Therefore, where feasible, sampling should be 

F I G U R E  1   Considering different soil habitats and corresponding sampling methods adds dimensionality to macroecological approaches
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conducted seasonally to capture the full breadth of species depth 
distributions (e.g., Martay & Pearce-Higgins, 2018).

A final opportunity for macroecological approaches related 
to dimensionality arises from the existence of soil communities ex 
situ, that is, in soil microhabitats above the soil proper. For exam-
ple, true soil-dwelling invertebrates including springtails and mites 
occur in suspended soil at various heights (up to 35 m) in canopies of 
subtropical and temperate rainforests (Lindo & Winchester, 2006; 
Rodgers & Kitching, 1998). In Canadian Western redcedar trees, 18 
of the 53 springtail (Collembola) species recorded from suspended 
soils did not occur in the forest floor (Lindo & Winchester, 2006). In 
Indonesian oil palm plantations, suspended soil in frond axils of palm 
oil trunks supported much higher densities and biomasses of soil 
microfauna and mesofauna than belowground soil, with suspended 
soils contributing an estimated 28% of the overall soil fauna metab-
olism in plantations (Potapov et al., 2020). These contributions of 
suspended soils to overall diversity and community turnover suggest 
that there is much to be gained by extending soil sampling above-
ground in forest ecosystems (Figure 1).

Information from vertical sampling may be integrated into the 
investigation of important macroecological patterns through the ex-
plicit incorporation of depth/height as a parameter in standard mac-
roecological approaches, for example, does community similarity 
decay more rapidly with depth than horizontal distance? However, 
more complex models will be required to investigate species– 
environment relationships in 3-D domains. For such applications, it 
may useful to turn to the marine literature where development of 
SDM techniques for 3-D systems is already underway (e.g., Duffy 
& Chown, 2017; Pérez-Costas et al., 2019). Similarly, investigations 
into the scaling of interaction strengths within species networks can 
differ between 2- and 3-D systems in terrestrial and marine realms, 
where advanced nonlinear statistical approaches, 3-D statistical 
point pattern models and 3-D agent-based modelling have been suc-
cessfully applied (see Barrios-O’Neill et al., 2016; Pawar, Dell, Lin, 
Wieczynski, & Savage, 2019; Raynaud & Nunan, 2014).

5  | BIOTIC CONSIDER ATIONS

5.1 | Dispersal

The dispersal capacity of many soil biota, and thus, the environment 
in which soil communities develop and interact, is often at a much 
finer resolution than the scale at which environmental variables are 
commonly measured (Grundmann & Debouzie,  2000; Hendershot 
et  al.,  2017), and varies tremendously between and within differ-
ent soil taxa (e.g., microbes, dispersing as spores, can generally 
disperse at larger scales than most soil animals). However, disper-
sal syndromes vary at multiple phylogenetic scales (e.g., fungi ver-
sus bacteria and phylotypes within bacteria in Archer et al., 2019). 
Therefore, sudden environmental changes that favour specific dis-
persal modes, may then favour certain taxa and so drive community 
structure through an intensified propagule pressure of those taxa, 

thus, dictating macroecological patterns. This process, as well as 
others, may operate at multiple scales. For example, some biogeo-
graphical ‘rules’ that apply to the distribution of vertebrates at the 
continental scale, for example, range size–frequency distributions, 
can be detected in prokaryotes within an 8 m × 8 m quadrat (Noguez 
et al., 2005), conflicting with the traditional idea that soil microbes 
are not limited by dispersal (Finlay, 2002). Overall, it is now well es-
tablished that dispersal limitation is central to explaining the distri-
bution of all soil organisms, and that dispersal may differ at different 
phylogenetic levels (Archer et al., 2019; Davison et al., 2015). It is, 
therefore, crucial to include dispersal capacity in models of below-
ground species and to take into account the fact that dispersal ca-
pacity varies greatly with size, ecology and life stage of the organism 
(Ettema & Wardle, 2002; Soininen, McDonald, & Hillebrand, 2007).

Dispersal kernels are a frequently used tool in invasion ecology 
that can be used to incorporate dispersal into SDMs (Meentemeyer, 
Anacker, Mark, & Rizzo, 2008). These describe the probability dis-
tribution of the distance travelled by an individual from a parent 
source and can be used to estimate the probability of colonization 
(Franklin,  2010). Novel tools for implementing cellular automata 
models into SDMs that map accessibility from source cells are an-
other promising recent development (Nobis & Normand,  2014). 
Although implementing such models can be challenging as the 
dispersal characteristics of many soil organisms remain largely un-
known (Schröder, 2008), molecular techniques provide tools to 
measure whole community dispersal of microbial systems (Peay, 
Garbelotto, & Bruns, 2010; Peay, Schubert, Nguyen, & Bruns, 2012). 
For example, within a biogeographical framework of plant host ‘is-
lands’, Peay et al. (2012) use next-generation sequencing of propa-
gules to demonstrate a dispersal limitation of 1 km across a whole 
ectomycorrhizal fungal community. For earthworms, on the con-
trary, visual tagging methods (Butt & Lowe, 2007) and X-ray scan-
ning have been used to measure dispersal in addition to molecular 
methods (Mathieu, Caro, & Dupont, 2018). Using these newer tech-
nologies to determine active and passive dispersal of soil organisms 
will allow movement-based theories of ecology to be tested (Thakur 
et al., 2019) that contribute to spatial and temporal biodiversity pat-
terns across scales (Dirilgen et al., 2018; Gumiere et al., 2016).

5.2 | Interactions

Microbiota, including soil fungi and bacteria, are almost always sam-
pled at scales larger than that at which individuals interact, there-
fore, lumping together sets of taxa that partition different resources, 
or occupy different microhabitats (Bach et  al.,  2018; Fierer & 
Lennon, 2011). This can greatly influence observed macroecological 
patterns, such as the species–abundance distribution (Shoemaker, 
Locey, & Lennon,  2017). Multiscale sampling is recommended to 
provide novel insights into the processes and mechanisms underly-
ing spatial organization of communities of soil taxa of various body 
sizes. Using soil aggregate isolation techniques when sampling, for 
example, will help characterize biodiversity of soil microbes relevant 
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to the spatial scale at which individuals interact and use resources 
(Bach et al., 2018).

Network analyses based on Spearman’s rank correlations have 
been used to determine co-occurrences of soil bacteria (Barberán 
et  al.,  2012), but due to the complex 3-D structure of soil, these 
networks may not always be indicative of real species interactions 
(Morriën, 2016). The simulation approach used by Raynaud and 
Nunan (2014), for example, shows that interspecific interactions 
between bacterial species are substantially lower than what you 
may expect given the bacterial diversity frequently measured in soil 
samples (see Dimensionality section above). For earthworms, stable 
isotopes have been used to determine interactions between inva-
sive species of earthworms within a 2-km2 area in the USA (Zhang 
et al., 2010), providing a sophisticated tool to address the challenge 
of non-transparency of the soil medium in identifying biotic interac-
tions where they cannot easily be observed.

There is a momentum to improve aboveground models of species 
distributions by incorporating biotic interactions (e.g., Staniczenko, 
Sivasubramaniam, Suttle, & Pearson, 2017). While challenging, this 
research track is promising for soil macroecology. Indeed, the partic-
ular importance of addressing this challenge for soils is highlighted 
by the substantial contribution of biotic interactions in shaping soil 
organisms’ distributions (Bahram et  al.,  2018; Raymond, Wharton, 
& Marshall,  2013), and the complex aboveground–belowground 
interactions that have been observed globally (De Deyn & Van der 
Putten, 2005). Joint SDMs account for species interactions via cor-
relation matrices of co-occurrence (Pollock et al., 2014) and can dis-
entangle species interactions from environmental correlates in large 
multispecies data sets (Warton et al., 2015), holding promise for soil 
macroecological studies.

Aboveground and belowground systems are linked by food web 
interactions and nutrient fluxes through plant litter decomposition 
(de Vries et al., 2013; Wardle et al., 2004), modulation of soil physical 
properties by plant diversity (Gould, Quinton, Weigelt, De Deyn, & 
Bardgett,  2016), and direct species–species interactions (Bardgett 
& Wardle, 2010). Soil biodiversity data, therefore, can be extremely 
powerful when used in conjunction with aboveground community 
data (Ramirez et  al.,  2015). This is particularly true for mycorrhi-
zal fungi, which form mutualisms with plants, and for which host 
specificity is an important geographical constraint on species dis-
tributions (Sato, Tsujino, Kurita, Yokoyama, & Agata, 2012). Hence, 
studies of community structure and biogeographical patterns of soil 
fungi are significantly improved when data on plant diversity and 
distributions are included within their models (Koyama, Maherali, 
& Antunes,  2019; Pellissier et  al.,  2014; Vályi, Mardhiah, Rillig, & 
Hempel, 2016). To this end, the FungalRoot database (Soudzilovskaia 
et al., 2020) provides key data on mycorrhizal associations with which 
to study the macroecology and biogeography of these interactions.

Feedbacks between the aboveground and belowground sys-
tems, however, are difficult to predict at large scales, as species in-
teractions are complex (De Deyn & Van der Putten, 2005; Wardle 
et al., 2004), vary along latitudinal gradients of biodiversity (De Deyn 
& Van der Putten, 2005) and operate over a hierarchy of temporal 

scales (Bardgett et  al.,  2005). Small spatial and temporal scale ex-
perimental manipulations (e.g., Gould et  al.,  2016; León-Sánchez 
et  al.,  2018), therefore, may not truly capture the complexities or 
multifunctionality of aboveground–belowground processes (De 
Deyn & Van der Putten, 2005), which also pose a challenge to tradi-
tional modelling approaches.

To overcome the challenge of integrating network ecology 
research into macroecology, we encourage the use of modelling 
approaches that facilitate complex interactions and pathways be-
tween multiple variable types (Kissling & Schleuning,  2015). For 
soil systems in particular, it is important to develop methods, such 
as correlation networks and structural equation models (SEMs), 
that emphasize biotic interactions, and also include environmen-
tal effects, for example, through latent and composite variables, 
to study causal mechanisms involving variables that are difficult 
to measure at a spatial scale relevant for soil organisms, or them-
selves exhibit complex interactions (e.g., as seen for soil fertility in 
Siciliano et al., 2014). SEMs are a useful correlative approach that 
can be easily implemented and characterize complex pathways at 
the ecosystem level, including the complex interaction networks 
and feedback loops observed in soil-to-aboveground systems 
(Eisenhauer, Bowker, Grace & Powell, 2015). Grace, Anderson, 
Han, and Scheiner (2010) present SEMs as an approach to address 
the challenge of eliciting generalizable patterns, such as those 
sought in macroecology, from heterogeneous system components. 
For example, SEMs have been used to partition causal influences 
and determine the direct and indirect relationships between geo-
graphical variables, soil characteristics, plant productivity/diver-
sity and soil diversity at both the continental and global scale for 
soil bacteria and fungi (Delgado-Baquerizo et al., 2017; Tedersoo 
et al., 2014), as well as to determine the causal mechanisms under-
lying ecosystem functioning (Eisenhauer, Reich, & Isbell, 2012) and 
food web stability (de Vries et al., 2012). They, therefore, provide 
a useful tool for soil scientists and macroecologists to combine 
biotic and abiotic factors into studies of causal patterns of soil di-
versity and functioning.

6  | ABIOTIC CONSIDER ATIONS

6.1 | Climate and microclimate

Fine-scale spatial structuring of soil species may occur where the 
macroscopic environment appears uniform (Caruso et  al.,  2012; 
Nielsen et al., 2010). For example, the spatial structure of grass tus-
socks in pasture alter the microclimate of the soil, which impacts 
earthworm diversity (Mathieu et al., 2009). To model soil biodiver-
sity, therefore, measurement of environmental heterogeneity is re-
quired at fine scales (e.g., measuring and modelling microclimates). 
Microclimate modelling can be expanded to the macro-scale by using 
gridded continental-scale soil and weather data to accurately predict 
hourly local microclimates at multiple soil depths using a mecha-
nistic modelling framework (Kearney et  al.,  2014). Microclimate 
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modelling has become more accessible through advances in remote 
sensing, for example, light detection and ranging (LiDAR), to quan-
tify environmental covariates at high resolutions (Lembrechts, Nijs, 
& Lenoir, 2019), and development of freely available software and 
code, for example, the R package microclima (Maclean, Mosedale, 
& Bennie,  2019). Furthermore, combining microclimate modelling 
frameworks with soil moisture simulation algorithms can provide ac-
curate, high resolution soil moisture estimates for entire continents 
(Kearney & Maino, 2018). Moving beyond simple correlative models 
towards mechanistic modelling is being encouraged within the SDM 
literature (Buckley et  al.,  2010) and offers a promising alternative 
for predicting distributions of soil organisms in particular, where 
small-scale spatial and temporal heterogeneity of the environment 
is often more important than large-scale climatic variables (Dauber 
et al., 2005; Kearney et al., 2014).

6.2 | Geodiversity and pedodiversity

Environmental factors other than climate are likely to be particu-
larly ecologically relevant determinants of species distributions 
belowground, and geological as well as biological resources should 
be considered (Ibáñez, Krasilnikov, & Saldaña, 2012). The incorpo-
ration of soil types, texture and geochemistry (i.e., pedodiversity) 

into analyses of soil biodiversity has been encouraged (Parker, 
2010) and carried out at the local scale (e.g., earthworms, Decaëns 
& Rossi,  2008; Solomou, Sfougaris, Vavoulidou, & Csuzdi,  2013; 
bacteria, Ranjard et  al.,  2010), as well as larger scales for earth-
worms (Rutgers et al., 2016). Integration of point level soil charac-
teristics data, such as the land use and coverage area frame survey 
(LUCAS) data set (Orgiazzi, Ballabio, Panagos, Jones, & Fernández-
Ugalde,  2018), can provide environmental information at coarse 
resolutions (2  km  ×  2  km) but large geographical extents, that is, 
continental, whilst machine learning techniques combining soil and 
earth observation data can provide global gridded soil information 
at a resolution of 250 m × 250 m (Hengl et al., 2017). The latter has 
recently been incorporated into models of global earthworm diver-
sity, but did not appear important in shaping community diversity, 
likely due to the scale of the study (Phillips et al., 2019). Diversity of 
geophysical properties (i.e., geodiversity) and pedodiversity provide 
opportunities to scale up soil biodiversity analyses. Spatial soil infor-
mation science has become particularly advanced and sophisticated 
statistical tools to predict spatial patterns of soil properties (includ-
ing salinity, soil moisture content and soil bulk density) offer novel 
opportunities to obtain predictor variables of soil organism distribu-
tions and diversity (Padarian, Minasny, & McBratney, 2020). We may 
expect an obvious link between geodiversity or pedodiversity vari-
ables and soil biodiversity; however, incorporation of these factors 

F I G U R E  2   The challenges associated with the belowground system that contributed to a lack of soil macroecological research, 
and potential approaches to address them. These challenges can be separated into four sets of necessary considerations: data; spatio-
temporal; biotic; and abiotic. Challenges for each solution are highlighted in central darker boxes whilst example approaches to address 
these challenges are shown in the surrounding, lighter boxes. eDNA = environmental DNA; J-SDMs = joint species distribution models; 
AMF = arbuscular mycorrhizal fungi; PCNM = principal coordinates of neighbourhood matrices
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into models has often been restricted to plants (e.g., Bailey, Boyd, 
& Field,  2018; Tukiainen et  al.,  2017), although geochemical vari-
ables including salinity and soil nitrate variables have been linked to 
nematode abundances in Antarctica (Poage et al., 2008), and global 
soil bacteria richness peaks in neutral soils (Fierer & Jackson, 2006). 
Pedodiversity analyses, therefore, offer an exciting opportunity to 
overcome a severe gap in soil macroecological research.

7  | RECOMMENDATIONS AND FUTURE 
PERSPEC TIVES

Although there has been a recent surge in broad scale papers map-
ping soil biodiversity, the field of soil macroecology needs to be 
advanced by emphasizing process over pattern (Hanson, Fuhrman, 
Horner-Devine, & Martiny,  2012). Soils differ from aboveground 
systems in ways that have been challenging for the generalizations 
dear to macroecology: they are characterized by high heterogene-
ity making data collection and analysis difficult, and are inhabited 
by organisms that are incredibly variable in size and trophic roles, 
while being poorly known taxonomically. We have discussed how 
recent methods and data management initiatives might help soil 
ecologists and macroecologists to collaborate more often. We 
demonstrate that methodological considerations need to be made 
at all stages of investigation spanning delimitation and quantifica-
tion of diversity, spatial and temporal context, biotic considera-
tions and abiotic properties, and propose multiple approaches to 
deal with challenges within each of these sets of considerations 
(Figure 2). Most of these methods are applicable (and some already 
applied) aboveground, but are particularly suited to address the in-
credible spatial and temporal variability of biotic and abiotic condi-
tions, combined with the scarcity of data, in soils. When these are 
overcome, we expect that new rules may emerge from macroeco-
logical analysis of soils.
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