3,399 research outputs found

    Automating an orbiter approach to Space Station Freedom to minimize plume impingement

    Get PDF
    The Space shuttle orbiter Reaction Control System's (RCS) plume impingement during proximity operations with Space Station Freedom (SSF) is a structural design driver for the SSF solar panels and radiators. A study underway at JSC is investigating whether the use of an automated approach controller could result in the reduction of plume impingement induced loads during orbiter approach to SSF. Ongoing real time person-in-the-loop (PIL) simulations of an orbiter approaching the SSF show that orbiter trajectory control can vary significantly from one pilot to the next. This variation is a cause for concern since current analyses predict that plume impingement loads resulting from PIL orbiter approaches may exceed the solar panel and radiator load limits. The use of an automated approach controller is expected to reduce peak loads by both minimizing orbiter translational jet firings in certain directions and controlling the frequency at which they occur during various phases of the approach

    Autonomous docking ground demonstration

    Get PDF
    The Autonomous Docking Ground Demonstration is an evaluation of the laser sensor system to support the docking phase (12 ft to contact) when operated in conjunction with the guidance, navigation, and control (GN&C) software. The docking mechanism being used was developed for the Apollo/Soyuz Test Program. This demonstration will be conducted using the 6-DOF Dynamic Test System (DTS). The DTS simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration, the laser sensor will be mounted on the target vehicle and the retroflectors will be on the chase vehicle. This arrangement was chosen to prevent potential damage to the laser. The laser sensor system, GN&C, and 6-DOF DTS will be operated closed-loop. Initial conditions to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved

    The crucial roles of biodiversity loss belief and perception in urban residents’ consumption attitude and behavior towards animal-based products

    Get PDF
    Products made from animal fur and skin have been a major part of human civilization. However, in modern society, the unsustainable consumption of these products – often considered luxury goods – has many negative environmental impacts. This study explores how people’s perceptions of biodiversity affect their attitudes and behaviors toward consumption. To investigate the information process deeper, we add the moderation of beliefs about biodiversity loss. Following the Bayesian Mindsponge Framework (BMF) analytics, we use mindsponge-based reasoning for constructing conceptual models and employ Bayesian analysis aided by Markov Chain Monte Carlo (MCMC) algorithms on a dataset of 535 Vietnamese urban residents. The results show that people’s preference for using products made from animal skin/fur is negatively associated with perceived consequences of biodiversity loss when they believe biodiversity loss is real and a major problem. In contrast, if urban residents believe biodiversity loss is unreal or not a significant issue, the association between perceived consequences of biodiversity loss and personal preference happens in the opposite direction. The same effects of biodiversity loss perception on people’s possession of skin/fur products was not found, indicating a more complex information process on behaviors compared to attitudes. Nevertheless, in the scenario that people believe biodiversity loss is not a significant issue, the higher the perceived consequences of biodiversity loss are, the greater number of animal-based products they likely own. Our results suggest that policymakers should not neglect the factor of personal belief besides knowledge and awareness in environmental campaigns

    Two low-power optical data transmission ASICs for the ATLAS Liquid Argon Calorimeter readout upgrade

    Full text link
    A serializer ASIC and a VCSEL driver ASIC are needed for the front-end optical data transmission in the ATLAS liquid argon calorimeter readout phase-I upgrade. The baseline ASICs are the serializer LOCx2 and the VCSEL driver LOCld, designed in a 0.25-{\mu}m Silicon-on-Sapphire (SoS) CMOS technology and consumed 843 mW and 320 mW, respectively. Based on a 130-nm CMOS technology, we design two pin-to-pin-compatible backup ASICs, LOCx2-130 and LOCld-130. Their power consumptions are much lower then of their counterparts, whereas other performance, such as the latency, data rate, and radiation tolerance, meet the phase-I upgrade requirements. We present the design of LOCx2-130 and LOCld-130. The test results of LOCx2-130 are also presented.Comment: 12 pages, 12 figure

    PoolHap: Inferring Haplotype Frequencies from Pooled Samples by Next Generation Sequencing

    Get PDF
    With the advance of next-generation sequencing (NGS) technologies, increasingly ambitious applications are becoming feasible. A particularly powerful one is the sequencing of polymorphic, pooled samples. The pool can be naturally occurring, as in the case of multiple pathogen strains in a blood sample, multiple types of cells in a cancerous tissue sample, or multiple isoforms of mRNA in a cell. In these cases, it's difficult or impossible to partition the subtypes experimentally before sequencing, and those subtype frequencies must hence be inferred. In addition, investigators may occasionally want to artificially pool the sample of a large number of individuals for reasons of cost-efficiency, e. g., when carrying out genetic mapping using bulked segregant analysis. Here we describe PoolHap, a computational tool for inferring haplotype frequencies from pooled samples when haplotypes are known. The key insight into why PoolHap works is that the large number of SNPs that come with genome-wide coverage can compensate for the uneven coverage across the genome. The performance of PoolHap is illustrated and discussed using simulated and real data. We show that PoolHap is able to accurately estimate the proportions of haplotypes with less than 2% error for 34-strain mixtures with 2X total coverage Arabidopsis thaliana whole genome polymorphism data. This method should facilitate greater biological insight into heterogeneous samples that are difficult or impossible to isolate experimentally. Software and users manual are freely available at http://arabidopsis.gmi.oeaw.ac.at/quan/poolhap/

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore