101 research outputs found

    Impact of Redox Cycles on Manganese, Iron, Cobalt, and Lead in Nodules

    Get PDF
    International audienceRedox processes are responsible for Fe and Mn segregation as Fe–Mn oxide coatings or nodules. These nodules are also trace element scavengers in soils. Redox processes are of particular importance in seasonally saturated soil containing naturally high concentrations of trace metals. We investigated the dynamics of Fe–Mn nodules and two associated trace elements, Co and Pb, under controlled redox conditions in a column experiment, including five columns fed with mimicked topsoil solution that was elevated in Fe and Mn. The results show that the redox conditions reached 100 mV, which was sufficient to dissolve Mn oxides and release the associated Co, while Pb was readsorbed onto nodule surfaces. The amounts of Mn and Co released into the water were small compared with the quantities stored in the nodules (<0.1% of the initial stock stored in the nodules). The redox conditions were insufficient, however, to allow Fe oxide dissolution. On the contrary, 70 to 90% of the Fe entering the column was fixed onto the nodules. In terms of an environmental threat, these results showed that Pb would not be released from soil during nodule dissolution, whereas Co, which is less toxic, would be released

    Mass balance of zinc redistribution during the pedogenesis of a soil developed on a natural geochemical anomaly

    Get PDF
    Pedogenetic processes that redistribute soil elements over time have been considerably investigated and clearly identified. Nevertheless, the quantification of their respective influences on element redistribution is still poorly known, while soil protection requires extensive knowledge of their long-time depending evolution. The quantitative redistribution of elements is of prime importance in polluted soils, since the long-term environmental hazards depend on their potential mobility and biodisponibility, thus speciation. Among the elements frequently encountered in polluted soils and exhibiting a well-established phytotoxic nature, zinc is of great concern. Nevertheless, pollutions are too recent to observe or even predict the long-term behavior of zinc in polluted soils. An alternative approach is to study paleosoil developed on natural geochemical anomalies. Indeed, such paleosoils display zinc concentrations equivalent to those of polluted soils with the advantage to involve long pedological time of contact between the elements and the different soil phases. Our study aims at quantifying the long-term redistribution of zinc during the pedogenesis of a soil developed upon a natural geochemical anomaly. We first determined zinc speciation both in the parental material and in the solum, then quantified redistribution by mass balance calculations. This approach permits to estimate Zn outputs or inputs in the solum and to quantify its redistribution along the profile and among the different mineral phases

    Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis

    Get PDF
    International audienceThe long-term redistribution of Zn in a naturally Zn-enriched soil during pedogenesis was quantified based on mass balance calculations. According to their fate, parent limestones comprised three Zn pools: bound to calcite and pyritesphalerite grains, bound to phyllosilicates and bound to goethite in the inherited phosphate nodules. Four pedological processes, i.e., carbonate dissolution, two stages of redox processes and eluviation, redistributed Zn during pedogenesis. The carbonate dissolution of limestones released Zn bound to calcite into soil solution. Due to residual enrichment, Zn concentrations in the soil are higher than those in parent limestones. Birnessite, ferrihydrite and goethite dispersed in soil horizon trapped high quantities of Zn during their formation. Afterwards, primary redox conditions induced the release of Zn and Fe into soil solution, and the subsequent individualization of Fe and Mn into Zn-rich concretions. Both processes and subsequent aging of the concretions formed induced significant exportation of Zn through the bottom water table. Secondary redox conditions promoted the weathering of Fe and Mn oxides in cements and concretions. This process caused other losses of Zn through lateral exportation in an upper water table. Concomitantly, eluviation occurred at the top of the solum. The lateral exportation of eluviated minerals through the upper water table limited illuviation. Eluviation was also responsible for Zn loss, but this Zn bound to phyllosilicates was not bioavailabl

    Bacterial dissolution of fluorapatite as a possible source of elevated dissolved phosphate in the environment

    Get PDF
    In order to understand the contribution of geogenic phosphorus to lake eutrophication, we have investigated the rate and extent of fluorapatite dissolution in the presence of two common soil bacteria (Pantoea agglomerans and Bacillus megaterium) at T = 25 °C for 26 days. The release of calcium (Ca), phosphorus (P), and rare earth elements (REE) under biotic and abiotic conditions was compared to investigate the effect of microorganism on apatite dissolution. The release of Ca and P was enhanced under the influence of bacteria. Apatite dissolution rates obtained from solution Ca concentration in the biotic reactors increased above error compared with abiotic controls. Chemical analysis of biomass showed that bacteria scavenged Ca, P, and REE during their growth, which lowered their fluid concentrations, leading to apparent lower release rates. The temporal evolution of pH in the reactors reflected the balance of apatite weathering, solution reactions, bacterial metabolism, and potentially secondary precipitation, which was implied in the variety of REE patterns in the biotic and abiotic reactors. Light rare earth elements (LREE) were preferentially adsorbed to cell surfaces, whereas heavy rare earth elements (HREE) were retained in the fluid phase. Decoupling of LREE and HREE could possibly be due to preferential release of HREE from apatite or selective secondary precipitation of LREE enriched phosphates, especially in the presence of bacteria. When corrected for intracellular concentrations, both biotic reactors showed high P and REE release compared with the abiotic control. We speculate that lack of this correction explains the conflicting findings about the role of bacteria in mineral weathering rates. The observation that bacteria enhance the release rate of P and REE from apatite could account for some of the phosphorus burden and metal pollution in aquatic environments

    Rare earth elements and zinc as tracers of pedogenetic processes : the case of soils developed from mineralized limestones

    No full text
    Ce travail évalue le potentiel du zinc et plus particulièrement des terres rares à tracer les différents processus le long d’une catena issue d’une formation carbonatée constituée d’une succession de bancs marneux et calcaires, et ayant subi des processus de décarbonatation, des conditions redox en lien avec l’hydromorphie et de l’éluviation. L’approche choisie repose (i) sur la spéciation des terres rares, à l’aide de méthodes physiques et chimiques, dans les traits pédologiques formés par les différents processus et des matériaux aux dépens desquels ils se sont développés, (ii) sur la quantification par bilan de masse des flux de terres rares et éléments majeurs associés. Ce travail a nécessité deux mises aux points méthodologiques : une méthode de normalisation des terres rares, basée sur l’enfoncement des fronts de transformation afin de quantifier l’impact des processus successifs sur le fractionnement des terres rares ; une méthodologie de reconstruction des matériaux parentaux pour chacun des horizons, l’approche par bilan de masse nécessitant une connaissance des stocks initiaux. L’impact de deux processus sur les fractionnements de terres rares est ensuite plus particulièrement abordé : la décarbonatation des matériaux parentaux et les processus d’oxydo-réduction. On montre ainsi l’importance de comparer les quantités mises en solution aux flux calculés par les bilans de masse pour prédire le devenir des éléments libérés et l’intérêt des terres rares pour quantifier les cycles de dissolution/précipitation des oxydes de fer et de manganèse.This project aims at considering the potential of zinc and rare earth element (REEs) at quantifying pedogenetic processes along a soil sequence developed from a limestone formation consisting in a succession of marl and limestone strata which underwent carbonate dissolution, redox cycles related to soil hydromorphy and eluviation. The chosen approach relies on (i) the speciation of rare earth elements - by a method combining sequential extractions and physical separations - in the pedological features resulting from the different processes and in the materials from which they developed; (ii) the quantification of the REE and major element fluxes by mass balance calculation. To do so, two methodologies were developed: a methodology of normalization of REEs based on the theory of transformation fronts to quantify the impact of the processes on REE fractionations; an innovative approach of the reconstruction of the former parent material for each soil horizon as mass balance calculation requires the quantification of initial stocks in elements. Two processes were then further studied: carbonate dissolution and redox processes. We thus point out the necessity to compare max fluxes as computed by mass balance to quantities released by carbonate dissolution in order to forecast the fate of elements released into the soil solution. We also evidenced the potential of REEs to quantify the dissolution/precipitation cycles of iron and manganese oxides

    Les terres rares et le zinc comme traceurs des processus pédogénétiques : application à une séquence de sols issue de calcaires minéralisés

    No full text
    This project aims at considering the potential of zinc and rare earth element (REEs) at quantifying pedogenetic processes along a soil sequence developed from a limestone formation consisting in a succession of marl and limestone strata which underwent carbonate dissolution, redox cycles related to soil hydromorphy and eluviation. The chosen approach relies on (i) the speciation of rare earth elements - by a method combining sequential extractions and physical separations - in the pedological features resulting from the different processes and in the materials from which they developed; (ii) the quantification of the REE and major element fluxes by mass balance calculation. To do so, two methodologies were developed: a methodology of normalization of REEs based on the theory of transformation fronts to quantify the impact of the processes on REE fractionations; an innovative approach of the reconstruction of the former parent material for each soil horizon as mass balance calculation requires the quantification of initial stocks in elements. Two processes were then further studied: carbonate dissolution and redox processes. We thus point out the necessity to compare max fluxes as computed by mass balance to quantities released by carbonate dissolution in order to forecast the fate of elements released into the soil solution. We also evidenced the potential of REEs to quantify the dissolution/precipitation cycles of iron and manganese oxides.Ce travail évalue le potentiel du zinc et plus particulièrement des terres rares à tracer les différents processus le long d’une catena issue d’une formation carbonatée constituée d’une succession de bancs marneux et calcaires, et ayant subi des processus de décarbonatation, des conditions redox en lien avec l’hydromorphie et de l’éluviation. L’approche choisie repose (i) sur la spéciation des terres rares, à l’aide de méthodes physiques et chimiques, dans les traits pédologiques formés par les différents processus et des matériaux aux dépens desquels ils se sont développés, (ii) sur la quantification par bilan de masse des flux de terres rares et éléments majeurs associés. Ce travail a nécessité deux mises aux points méthodologiques : une méthode de normalisation des terres rares, basée sur l’enfoncement des fronts de transformation afin de quantifier l’impact des processus successifs sur le fractionnement des terres rares ; une méthodologie de reconstruction des matériaux parentaux pour chacun des horizons, l’approche par bilan de masse nécessitant une connaissance des stocks initiaux. L’impact de deux processus sur les fractionnements de terres rares est ensuite plus particulièrement abordé : la décarbonatation des matériaux parentaux et les processus d’oxydo-réduction. On montre ainsi l’importance de comparer les quantités mises en solution aux flux calculés par les bilans de masse pour prédire le devenir des éléments libérés et l’intérêt des terres rares pour quantifier les cycles de dissolution/précipitation des oxydes de fer et de manganèse

    Rare earth elements and zinc as tracers of pedogenetic processes (the case of soils developed from mineralized limestones)

    No full text
    Ce travail évalue le potentiel du zinc et plus particulièrement des terres rares à tracer les différents processus le long d une catena issue d une formation carbonatée constituée d une succession de bancs marneux et calcaires, et ayant subi des processus de décarbonatation, des conditions redox en lien avec l hydromorphie et de l éluviation. L approche choisie repose (i) sur la spéciation des terres rares, à l aide de méthodes physiques et chimiques, dans les traits pédologiques formés par les différents processus et des matériaux aux dépens desquels ils se sont développés, (ii) sur la quantification par bilan de masse des flux de terres rares et éléments majeurs associés. Ce travail a nécessité deux mises aux points méthodologiques : une méthode de normalisation des terres rares, basée sur l enfoncement des fronts de transformation afin de quantifier l impact des processus successifs sur le fractionnement des terres rares ; une méthodologie de reconstruction des matériaux parentaux pour chacun des horizons, l approche par bilan de masse nécessitant une connaissance des stocks initiaux. L impact de deux processus sur les fractionnements de terres rares est ensuite plus particulièrement abordé : la décarbonatation des matériaux parentaux et les processus d oxydo-réduction. On montre ainsi l importance de comparer les quantités mises en solution aux flux calculés par les bilans de masse pour prédire le devenir des éléments libérés et l intérêt des terres rares pour quantifier les cycles de dissolution/précipitation des oxydes de fer et de manganèse.This project aims at considering the potential of zinc and rare earth element (REEs) at quantifying pedogenetic processes along a soil sequence developed from a limestone formation consisting in a succession of marl and limestone strata which underwent carbonate dissolution, redox cycles related to soil hydromorphy and eluviation. The chosen approach relies on (i) the speciation of rare earth elements - by a method combining sequential extractions and physical separations - in the pedological features resulting from the different processes and in the materials from which they developed; (ii) the quantification of the REE and major element fluxes by mass balance calculation. To do so, two methodologies were developed: a methodology of normalization of REEs based on the theory of transformation fronts to quantify the impact of the processes on REE fractionations; an innovative approach of the reconstruction of the former parent material for each soil horizon as mass balance calculation requires the quantification of initial stocks in elements. Two processes were then further studied: carbonate dissolution and redox processes. We thus point out the necessity to compare max fluxes as computed by mass balance to quantities released by carbonate dissolution in order to forecast the fate of elements released into the soil solution. We also evidenced the potential of REEs to quantify the dissolution/precipitation cycles of iron and manganese oxides.ORLEANS-SCD-Bib. electronique (452349901) / SudocSudocFranceF
    • …
    corecore