345 research outputs found
A model for aperiodicity in earthquakes
International audienceConditions under which a single oscillator model coupled with Dieterich-Ruina's rate and state dependent friction exhibits chaotic dynamics is studied. Properties of spring-block models are discussed. The parameter values of the system are explored and the corresponding numerical solutions presented. Bifurcation analysis is performed to determine the bifurcations and stability of stationary solutions and we find that the system undergoes a Hopf bifurcation to a periodic orbit. This periodic orbit then undergoes a period doubling cascade into a strange attractor, recognized as broadband noise in the power spectrum. The implications for earthquakes are discussed
a comparison of morphological and petrological methods
In planetary sciences, the emplacement of lava flows is commonly modelled
using a single rheological parameter (apparent viscosity or apparent yield
strength) calculated from morphological dimensions using Jeffreysʌ and Hulmeʌs
equations. The rheological parameter is then typically further interpreted in
terms of the nature and chemical composition of the lava (e.g., mafic or
felsic). Without the possibility of direct sampling of the erupted material,
the validity of this approach has remained largely untested. In modern
volcanology, the complex rheological behaviour of lavas is measured and
modelled as a function of chemical composition of the liquid phase, fractions
of crystals and bubbles, temperature and strain rate. Here, we test the
planetary approach using a terrestrial basaltic lava flow from the Western
Volcanic Zone in Iceland. The geometric parameters required to employ
Jeffreysʌ and Hulmeʌs equations are accurately estimated from high-resolution
HRSC-AX Digital Elevation Models. Samples collected along the lava flow are
used to constrain a detailed model of the transient rheology as a function of
cooling, crystallisation, and compositional evolution of the residual melt
during emplacement. We observe that the viscosity derived from the morphology
corresponds to the value estimated when significant crystallisation inhibits
viscous deformation, causing the flow to halt. As a consequence, the inferred
viscosity is highly dependent on the details of the crystallisation sequence
and crystal shapes, and as such, is neither uniquely nor simply related to the
bulk chemical composition of the erupted material. This conclusion, drawn for
a mafic lava flow where crystallisation is the primary process responsible for
the increase of the viscosity during emplacement, should apply to most of
martian, lunar, or mercurian volcanic landforms, which are dominated by
basaltic compositions. However, it may not apply to felsic lavas where
vitrification resulting from degassing and cooling may ultimately cause lava
flows to halt
Crystal plasticity as an indicator of the viscous-brittle transition in magmas
Understanding the flow of multi-phase (melt, crystals and bubbles) magmas is of great importance for interpreting eruption dynamics. Here we report the first observation of crystal plasticity, identified using electron backscatter diffraction, in plagioclase in andesite dome lavas from VolcĂĄn de Colima, Mexico. The same lavas, deformed experimentally at volcanic conduit temperature and load conditions, exhibit a further, systematic plastic response in the crystalline fraction, observable as a lattice misorientation. At higher stress, and higher crystal fraction, the amount of strain accommodated by crystal plasticity is larger. Crystal plastic distortion is highest in the intact segments of broken crystals, which have exceeded their plastic limit. We infer that crystal plasticity precludes failure and can punctuate the viscous-brittle transition in crystal-bearing magmas at certain shallow magmatic conditions. Since crystal plasticity varies systematically with imposed conditions, this raises the possibility that it may be used as a strain marker in well-constrained systems
Magma mixing enhanced by bubble segregation
In order to explore the materials' complexity induced by bubbles rising through mixing magmas, bubble-advection experiments have been performed, employing natural silicate melts at magmatic temperatures. A cylinder of basaltic glass was placed below a cylinder of rhyolitic glass. Upon melting, bubbles formed from interstitial air. During the course of the experimental runs, those bubbles rose via buoyancy forces into the rhyolitic melt, thereby entraining tails of basaltic liquid. In the experimental run products, these plume-like filaments of advected basalt within rhyolite were clearly visible and were characterised by microCT and high-resolution EMP analyses. The entrained filaments of mafic material have been hybridised. Their post-experimental compositions range from the originally basaltic composition through andesitic to rhyolitic composition. Rheological modelling of the compositions of these hybridised filaments yield viscosities up to 2 orders of magnitude lower than that of the host rhyolitic liquid. Importantly, such lowered viscosities inside the filaments implies that rising bubbles can ascend more efficiently through pre-existing filaments that have been generated by earlier ascending bubbles. MicroCT imaging of the run products provides textural confirmation of the phenomenon of bubbles trailing one another through filaments. This phenomenon enhances the relevance of bubble advection in magma mixing scenarios, implying as it does so, an acceleration of bubble ascent due to the decreased viscous resistance facing bubbles inside filaments and yielding enhanced mass flux of mafic melt into felsic melt via entrainment. In magma mixing events involving melts of high volatile content, bubbles may be an essential catalyst for magma mixing. Moreover, the reduced viscosity contrast within filaments implies repeated replenishment of filaments with fresh end-member melt. As a result, complex compositional gradients and therefore diffusion systematics can be expected at the filament-host melt interface, due to the repetitive nature of the process. However, previously magmatic filaments were tacitly assumed to be of single-pulse origin. Consequently, the potential for multi-pulse filaments has to be considered in outcrop analyses. As compositional profiles alone may remain ambiguous for constraining the origin of filaments, and as 3-D visual evidence demonstrates that filaments may have experienced multiple bubbles passages even when featuring standard diffusion gradients, therefore, the calculation of diffusive timescales may be inadequate for constraining timescales in cases where bubbles have played an essential role in magma mixing. Data analysis employing concentration variance relaxation in natural samples can distinguish conventional single-pulse filaments from advection via multiple bubble ascent advection in natural samples, raising the prospect of yet another powerful application of this novel petrological tool
Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity
Dendritic cells (DCs) play a critical role in orchestrating adaptive immune responses due to their
unique ability to initiate T cell responses and direct
their differentiation into effector lineages. Classical
DCs have been divided into two subsets, cDC1 and
cDC2, based on phenotypic markers and their
distinct abilities to prime CD8 and CD4 T cells. While
the transcriptional regulation of the cDC1 subset has
been well characterized, cDC2 development and
function remain poorly understood. By combining
transcriptional and chromatin analyses with genetic
reporter expression, we identified two principal
cDC2 lineages defined by distinct developmental
pathways and transcriptional regulators, including
T-bet and RORgt, two key transcription factors
known to define innate and adaptive lymphocyte
subsets. These novel cDC2 lineages were characterized by distinct metabolic and functional programs. Extending our findings to humans revealed
conserved DC heterogeneity and the presence of
the newly defined cDC2 subsets in human cancer
Method for fabricating submicron silicide structures on silicon using a resistless electron beam lithography process
Abstract : A novel resistless lithography process using a conventional electron beam system is presented. Metallic lines with widths of less than 50 nm were produced on silicon substrates. The process is based on localized heating with a focused electron beam of thin platinum layers deposited on silicon. It is demonstrated that silicide formation occurs at the Pt-Si interface. By using a dilute solution of aqua regia, it is possible to obtain a sufficient difference in etch rates between exposed and unexposed regions of the platinum thin film to selectively remove only the unexposed areas
Statistical evidence of transitioning open-vent activity towards a paroxysmal period at VolcĂĄn Santiaguito (Guatemala) during 2014â2018
Long-term eruptive activity at the Santiaguito lava dome complex, Guatemala, is characterised by the regular occurrence of small-to-moderate size explosions from the active Caliente dome. Between November 2014 and December 2018, we deployed a seismo-acoustic network at the volcano, which recorded several changes in the style of eruption, including a period of elevated explosive activity in 2016. Here, we use a new catalogue of explosions to characterise changes in the eruptive regime during the study period. We identify four different phases of activity based on changes in the frequency and magnitude of explosions. At the two ends of the spectrum of repose times we find pairs of explosions with near-identical seismic and acoustic waveforms, recorded within 1â10 min of one another, and larger explosions with recurrence times on the order of days to weeks. The magnitude-frequency relationship for explosions at Santiaguito is well described by a power-law; we show that changes in b-value between eruptive regimes reflect temporal and spatial changes in rupture mechanisms, likely controlled by variable magma properties. We also demonstrate that the distribution of inter-explosion repose times between and within phases is well represented by a Poissonian process. The Poissonian distribution describing repose times changes between and within phases as the source dynamics evolve. We find that changes in source properties restrict the extrapolation of explosive behaviour to within a given eruptive phase, limiting the potential for long-term assessments of anticipated eruptive behaviour at Santiaguito
- âŠ