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SUMMARY

Dendritic cells (DCs) play a critical role in orches-
trating adaptive immune responses due to their
unique ability to initiate T cell responses and direct
their differentiation into effector lineages. Classical
DCs have been divided into two subsets, cDC1 and
cDC2, based on phenotypic markers and their
distinct abilities to prime CD8 and CD4 T cells. While
the transcriptional regulation of the cDC1 subset has
been well characterized, cDC2 development and
function remain poorly understood. By combining
transcriptional and chromatin analyses with genetic
reporter expression, we identified two principal
cDC2 lineages defined by distinct developmental
pathways and transcriptional regulators, including
T-bet and RORgt, two key transcription factors
known to define innate and adaptive lymphocyte
subsets. These novel cDC2 lineages were charac-
terized by distinct metabolic and functional pro-
grams. Extending our findings to humans revealed
conserved DC heterogeneity and the presence of
the newly defined cDC2 subsets in human cancer.

INTRODUCTION

The vast array of infectious and non-infectious challenges faced

by the vertebrates ranging from bacteria and viruses to para-

sites, toxins, and noxious substances requires distinct immune

defense strategies reflected in diversification among effector

cells of the adaptive immune system, foremost, CD4 T cells.

Distinct effector cell subsets, whose functions are defined by

divergent repertoires of cytokines and effector molecules

tailored to counter corresponding types of threat, emerge upon

activation and differentiation of naive CD4 T cells orchestrated

by a set of transcription factors (TFs). The latter include T-bet

(Tbx21), GATA3, and RORgt promoting differentiation of inter-
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feron (IFN)-g-producing Th1 cells, interleukin (IL)-4-producing

Th2 cells, and IL-17-producing Th17 cells, respectively (Kanno

et al., 2012; Littman and Rudensky, 2010). Recent discovery of

innate lymphocyte ILC1, ILC2, and ILC3 subsets expressing cor-

responding TF extended the above concept to the innate

lymphoid cell counterparts of CD4 T cells (Colonna, 2018).

Dendritic cells (DC) sensemicrobial agents and direct elabora-

tion of protective T cell responses commensurate to the chal-

lenge type. Classical DCs (cDCs), defined by the expression of

integrin-aX (CD11c) and major histocompatibility complex class

II (MHC class II) (Steinman et al., 1979), comprise two subsets,

cDC1s and cDC2s (Guilliams et al., 2014). This initial division re-

flects developmental and functional heterogeneity among DCs.

cDC1s, identified by cell surface expression of XCR1, CD8a,

CLEC9A, or CD103 (Durai and Murphy, 2016), are developmen-

tally dependent on IRF8 and BATF3 (Aliberti et al., 2003; Hildner

et al., 2008). cDC1s cross-present antigens and prime cytotoxic

CD8+ T cell responses to intracellular pathogens (Dudziak et al.,

2007; Hildner et al., 2008; Yamazaki et al., 2013). Initial studies

characterizing human DCs using single-cell transcriptomics indi-

cate that cDC1s are a relatively homogeneous population (Villani

et al., 2017). By contrast, cDC2s, defined by the cell surface

expression of CD11b and CD172a (Durai and Murphy, 2016),

comprise a heterogeneous population of cells with differential

surface expression of Esam, Mgl2 (CD301b), or CLEC12A (Ku-

mamoto et al., 2013; Lewis et al., 2011). These DC sub-types

exhibit variable dependence on IRF4 and Notch signaling (Lewis

et al., 2011; Schlitzer et al., 2013) and appear to have distinct

functional roles (Gao et al., 2013; Kashem et al., 2015; Kuma-

moto et al., 2016; Linehan et al., 2015), suggesting further diver-

sification within cDC2s. However, our understanding of cDC2

heterogeneity and its biological implications has been limited

by a lack of knowledge of its transcriptional basis, required for

the development of genetic tools to selectively target DC

subsets.

Here, we sought to explore DC heterogeneity and its transcrip-

tional basis. Using single-cell, ‘‘bulk’’ RNA sequencing (RNA-

seq), assay for transposase-accessible chromatin using

sequencing (ATAC-seq), and specific gene reporter analyses,
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we systematically characterized all known DC subsets. In an un-

expected parallel to innate and adaptive lymphoid cell subsets,

we uncovered two overarching cDC2 subsets defined by

expression of a distinct set of TFs, including T-bet and RORgt.

Acquisition of opposing cDC2 fates accompanied by induction

of these TFs in response to environmental cues forms the basis

of their phenotypic and functional heterogeneity, conserved

across mice and humans.

RESULTS

Unbiased Dissection of DC Subsets by Single-Cell
RNA-Seq
The transcription factor T-bet delineates subsets of innate

lymphoid cells (ILCs) and T helper cells with distinct effector pro-

grams, and its expression has also been reported in DCs (Lugo-

Villarino et al., 2003). To comprehensively analyze T-bet expres-

sion across splenic DCs, we utilized a T-bet reporter allele,

Tbx21RFP-Cre, which faithfully reports endogenous T-bet protein

expression (Levine et al., 2017). This revealed that T-bet was

uniquely expressed in a subset of CD11b+XCR1– cDC2s in all

lymphoid and mucosal tissues examined (Figures 1A, 1B, and

S1A). Of note, we did not identify T-bet+ cDC2s within the intes-

tinal CD11b+XCR1+ (DP) cDC subset (Figure S1B). T-bet was not

expressed in other myeloid cell lineages (Figure S1C). Genetic

fate mapping by administration of tamoxifen to Tbx21RFP-CreER-

T2Rosa26YFP mice revealed that DCs that expressed T-bet at

the time of Cre-mediated YFP tagging, retained its expression

over their lifespan (Figures 1C and 1D). Thus, T-bet-expressing

cDC2s represent a stable cell lineage. History of T-bet expres-

sion marked by YFP was not detectable in cDC1s (data not

shown) indicating that T-bet expression is acquired after DC pro-

genitors commit to cDC2 cell fate. These results suggested that

cDC2s may harbor additional subsets defined by expression of

alternative TFs.

To uncover the full spectrum of DC heterogeneity, we

utilized droplet-based single-cell RNA-sequencing (scRNA-

seq) to profile splenic DCs defined as Lin(CD3,CD19,

CD90)–Ly6C–CD64–MHCII+CD11c+. Given previous reports of

poor Tbx21 transcript detection using such methods (Bernink

et al., 2017; Björklund et al., 2016), we elected to profile fluores-

cence-activated cell sorting (FACS) purified RFP(T-bet)+ and

RFP(T-bet)– DCs separately (Figure S1D) to enable definitive

post hoc identification of T-bet-expressing cells. A total of

4,464 single-cell transcriptomes were generated after pre-pro-

cessing. Analysis of gene expression was performed on the

compiled data from the two populations without consideration

of cell-surface markers utilized for sorting. We performed unsu-

pervised graph clustering using Phenograph (Levine et al.,

2015), opting for a finer clustering of the data to increase the

sensitivity of our analysis to small sub-populations. This identi-

fied 17 distinct clusters, visualized using t-distributed stochastic

neighbor embedding (t-SNE) (Figure 1E). Comparison of their

transcriptional features with immune cell transcriptome profiles

reported by ImmGen Consortium (Miller et al., 2012) revealed a

contaminating population of Ly6C+ monocytes (cluster 16; Fig-

ures S1D and S1E) that were removed from downstream ana-

lyses. We established the cell identity of each cluster through
the analysis of canonical DC gene expression (Figure 1F), similar-

ity with bulk transcriptomes from Immgen datasets (Figure S1E)

and proportion of RFP(T-bet)+ cells for each cluster (Figure 1G).

CLEC9A+XCR1+ cDC1s were partitioned across 6 clusters (1,

4, 5, 7, 9, and 13), T-bet+CD11b+SIRPa+ cDC2s were repre-

sented by 5 clusters (0, 2, 6, 8, 15) and T-bet–CD11b+SIRPa+

cDC2s by 2 clusters (3 and 10). In agreement with a recent study

(Cabeza-Cabrerizo et al., 2019), we identified proliferating DCs

marked by enrichment of genes associated with cell-cycle

comprising 19.1% of cDC1s (cluster 4) and 15.7% of cDC2s

(clusters 6 and 8; Figure 1H), suggesting that mature splenic

DCs are actively dividing in the steady state. After removal of

cell-cycle signals, the first principal component of variationwhich

drives the phenotypic diversity in T-bet+ cDC2s comprises genes

associated with DC maturation (Cd83, Ccr7), along with

increased expression of cytokines and chemokines (Figure S1F).

Thus, the clusters of T-bet+ cDC2s likely represent a continuum

of discrete states of maturation rather than separate phenotypic

entities. Remaining heterogeneity among cDC1 clusters was pri-

marily accounted for by cells in cluster 9, which exhibited amixed

cDC1/cDC2 phenotype and characteristics of ‘‘doublets,’’

potentially arising from phagocytosis. Cluster 14 contained a

mixture of T-bet+ and T-bet– cDC2s. Two clusters (11 and 12),

lacking both Itgam (CD11b) and Xcr1, did not align with either

cDC1s or cDC2s. Cluster 11 cells had a weak cDC2 signature

(Figure 1F) while also expressing genes associated with plasma-

cytoid DCs (Bst1, Il3ra, Siglech, and Irf7) (Figure 1F), reminiscent

of recently described circulating human pre-DCs (See et al.,

2017; Villani et al., 2017). Cluster 12 cells were distinguished by

high Ccr7 expression and a gene signature that correlated with

peripheral lymphnode (LN)MHCIIhi ‘‘migratory’’ DCs (Figure S1E;

Miller et al., 2012). The transcriptional profiles of the clusters

identified by scRNA-seq analyses closely resembled those of

bulk-sorted T-bet– cDC2s, T-bet+ cDC2s, and cDC1s analyzed

using conventional RNA-seq (Figure 1I).

Characterizing cDC2 Heterogeneity
To gain further insight into cDC2 heterogeneity, we identified

differential gene expression signatures for the individual

cDC2 clusters (Figure 2A; Table S1). Shared gene expression

among individual T-bet+ cDC2 clusters suggests that these

clusters represent a single cellular population with graded

gene expression states. Cluster 14, comprising T-bet+ and

T-bet– cDC2s, was distinguished by an increased metabol-

ically active state (Figure S2A). The two T-bet– cDC2 clusters

(3 and 10) shared expression ofCsf1r and Lyz2 and other genes

known to be associated with monocytes and macrophages

(Figure 2A). Tmem176a and Tmem176b were highly expressed

in T-bet– cDC2s (Figure 2A). This observation was particularly

intriguing given that expression of these genes is RORgt-

dependent and a feature of all RORgt lymphocytes—ILC3s

and Th17 cells (Ciofani et al., 2012; Drujont et al., 2016; Robin-

ette et al., 2015). Although we failed to detect expression of

Rorc by scRNA-seq (data not shown), it was highly enriched

in T-bet– cDC2s in the bulk RNA-seq dataset (Figure 2B).

Collectively, these data identify two broad cDC2 subsets

defined by the mutually exclusive expression of T-bet

or RORgt.
Cell 179, 846–863, October 31, 2019 847
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To identify discriminative cell surface markers that would best

classify cells into T-bet+ cDC2s or T-bet– cDC2s, we combined

the earth mover’s distance (EMD)-based measure of differential

expression with a measure of classification—the area under the

ROC curve (AUC) metric—on imputed expression values

(McClish, 1989). Among 64 genes identified (AUC R 0.99,

EMD R 4 SD; Figure S2B; Table S2), T-bet+ cDC2s were best

defined by the expression of the Notch target Dtx1 indicating

that this subset may represent the Notch2-dependent cDC2

subset, previously distinguished by cell surface expression of

Esam (Lewis et al., 2011). T-bet– cDC2 clusters uniquely ex-

pressed CLEC12A and could be further separated based on

the expression of several cell surface markers by cluster 10 cells

including CLEC10A (CD301a), CD209a, and NKG2D (Klrk1) (Fig-

ures 2A and S2C). Cd301b (Mgl2) was exclusively expressed by

this cluster (Figure S2D) indicating that Mgl2+ cDC2s, previously

reported in the skin and draining LN (Kumamoto et al., 2013), are

akin to T-bet– cDC2.

Flow cytometric analysis confirmed that CLEC12A was exclu-

sively expressed by T-bet– DCs (Figures 2C and 2D). Esam alone

was not sufficient to discriminate between T-bet+ and T-bet–

DCs (Figures 2C and 2D). In agreement with the scRNA-seq

analysis, CLEC10A expression was limited to a subset of

(T-bet–/CLEC12A+) cDC2s (Figures 2C and 2D). Further analysis

of lymphoid and non-lymphoid tissue confirmed that CLEC12A+

and CLEC10A+ cDC2 subsets reside within the T-bet– cDC2

fraction (Figure S2E). Thus, a combination of Esam and

CLEC12A could be used to distinguish T-bet+ DCs from T-bet–

DCs with CLEC10A further delineating two subsets of T-bet–

DCs. Using these newly defined markers we sorted T-bet+,

T-bet–CLEC10A+, and T-bet–CLEC10A– cDC2 subsets and as-

sessed their morphology using cytospin. These cell subsets

were morphologically indistinguishable with classic cerebriform

nuclei typical of DCs (Figure S2F; Inaba et al., 1992; Villani

et al., 2017).

Further examination of unique transcripts that discriminated T-

bet– DCs from T-bet+ counterparts revealed markedly increased

expression of Psap, encoding a precursor for saposins, and

Npc2, which regulates the transport of cholesterol from lyso-

some (Infante et al., 2008; Figures 2A and S2B). Furthermore,

gene set enrichment analysis (GSEA) analysis revealed enrich-

ment of pathways involved in lipid localization, transport, and
Figure 1. Single-Cell Survey Reveals Heterogeneity of cDC2s with Two

(A) Representative contour plot showing gating strategy for splenic DC

F)–Ly6C–CD64–CD11c+MHCII+.

(B) Frequency of T-bet+ cDC2s across tissues. Each circle represents one mou

defined as MHCIIhiCD11cint and resident DCs as MHCIIintCD11chi. Error bars rep

(C) Analysis of RFP+ and YFP+ splenic cDC2s from Tbx21RFP-CreERT2Rosa26YFP m

(D) Percent RFP+ and YFP+ of cDC2 cells. Percent RFP+ of YFP+ cDC2s at indicat

n = 3–4 mice per time point.

(E) t-SNE embedding of 4,464 DCs. Colors indicate unsupervised clustering by Ph

(right panel).

(F) Expression of canonical DC markers across the transcriptionally defined DC

(G) Proportion of T-bet (RFP+) cells in each cell cluster identified in (D).

(H) Violin plot showing expression of the cell-cycle signature across the DC clus

(I) Similarity of bulk T-bet– cDC2s, T-bet+ cDC2, and cDC1 transcriptomes to the r

between the cell population identified in the row label and the DC cluster identifi

See also Figures S1 and S7.
metabolism in T-bet– cDC2s (Figure 2E). In contrast, T-bet+

cDC2s were characterized by high levels of Tbc1d4, a gene

regulating glucose transporter expression (Eguez et al., 2005)

and Mdh, an enzyme that supports NADH recycling and sus-

tained glycolysis (Figure S2B; Gaude et al., 2018). Thus, meta-

bolic properties of these subsets appear distinct.

Transcriptional profiles of T-bet+ and T-bet– cDC2s, as

well as cDC1s isolated from spleen or mesenteric LN (MLN)

using bulk RNA-seq revealed near perfect correlation of

differentially expressed DC subset-specific genes across tissues

(Figure 2F). A core set of 69 genes, including Tbx21, Dtx1, and

Ccr6, was overexpressed by all T-bet+ cDC2s irrespective of their

tissue location. Genes that defined T-bet– cDC2s included

Clec12a, Cx3cr1, Cd14, Il1a, and P2rx7 (Table S3). A number of

the cDC2 subset defining genes have not previously been associ-

ated with DC differentiation or function.

Relationship of cDC2 Subsets to Monocytes
T-bet– DCs expressed higher levels of genes previously associ-

ated with monocytes including Csf1r, Ccr2, and Cx3cr1. Anal-

ysis of Zbtb46 expression, known to distinguish cDCs from

monocytes and macrophages (Meredith et al., 2012; Miller

et al., 2012; Satpathy et al., 2012), demonstrated similar levels

of expression between T-bet+ and T-bet– cDC2s (Figure 3A),

confirming their identity as cDCs. Furthermore, analysis

of monocyte markers showed that while T-bet– cDC2s

expressed higher levels of Csf1r mRNA, only a small subset

of T-bet– cDC2s expressed CSF1R protein (Figure 3B).

CX3CR1 was expressed by �30% of T-bet– cDC2s (Figure 3C),

consistent with a previous study of cDC-enriched CX3CR1+ an-

tigen-presenting cells (Esterházy et al., 2016). Analysis of

Ccr2GFP mice revealed higher CCR2 by CLEC12A+ Esam– (T-

bet–) than CLEC12A–Esam+(T-bet+) cDC2s. Nevertheless,

�50% of T-bet+ cDC2s were also CCR2+ (Figure 3D). Finally,

we assessed the impact of CCR2 ablation on T-bet– cDC2s.

Whereas Ccr2 deletion led to loss of monocytes as expected

(Serbina and Pamer, 2006), CLEC10A+T-bet– cDC2s were un-

affected and CLEC10A–T-bet– cDC2s showed only a partial

reduction in frequency (Figure 3E). Thus, the currently accepted

‘‘monocyte’’ gene signature is not sufficient to discriminate be-

tween monocytes and T-bet– cDC2s due to considerable over-

lap in gene expression across these cell types. Instead, steady-
Subsets Delineated by Expression of T-Bet

s in Tbx21RFP-Cre mice. DCs defined as Lin(CD3,CD19,CD49b,Siglec-

se. In the peripheral and mesenteric LN (PLN and MLN), migratory DCs were

resent mean ± SEM.

ice, 3 days post tamoxifen gavage.

ed time points post tamoxifen gavage (right). Error bars represent mean ± SEM;

enograph (left panel) or classification based on expression of canonical markers

clusters from (E).

ters from (E).

eference single-cell DC clusters (E). Colors represent the correlation coefficient

ed by the column label.
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Figure 2. T-bet and RORgt Expression Delineates Distinct cDC2 Subsets

(A) Heatmap reporting scaled, imputed expression for the top 10 differentially expressed genes for each cDC2 cluster identified in Figure 1E. Genes of interest are

shown on the right.

(B) Expression of Rorc transcript in bulk sorted T-bet– cDC2s, T-bet+ cDC2s, and cDC1s.

(C) Expression of CLEC12A, Esam, and CLEC10A in cDC2s from Tbx21RFP-Cre mice. Far right: CLEC12A and CLEC10A expression within T-bet– cDC2s.

(D) Summary graph for (C). Each symbol represents one mouse.

(E) Enrichment of GO pathways in in T-bet+ versus T-bet– cDC2 clusters.

(F) Correlation between splenic and MLN cDC2 transcriptomes.

Error bars represent mean ± SEM. See also Figures S2 and S7 and Tables S1, S2, and S3.
state monocytes and cDC2s can be distinguished by exclusion

of Ly6C+ cells in agreement with a recent scRNA-seq analysis

of MHC class II+ monocytes (Mildner et al., 2017). Shared

expression of genes such as CX3CR1, CCR2, and CSF1R

may thus be a reflection of close relatedness of cDCs and

monocytes with shared phenotypes and functions.
850 Cell 179, 846–863, October 31, 2019
Transcriptional Regulation of Chromatin Accessibility
and Gene Expression in cDC2s
Next, we performed ATAC-seq to assess TF-binding motif

enrichment at differentially accessible open chromatin sites

in cDC1s, T-bet+ and T-bet– cDC2s (Figures 4A and S3A;

Table S4). 2,399 peaks (associated with 1,498 genes) were
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Figure 3. T-bet– cDC2s Are Distinct from Monocytes

(A) Expression of Zbtb46 in bulk sorted DC subsets.

(B) Representative plot showing expression of CSF1R in cDC2s and summary graph (right). Each symbol represents one mouse.

(C) Representative plot showing expression of CX3CR1 in cDC2s and summary graph (right). Each symbol represents one mouse.

(D) Expression of CCR2 (GFP) in splenic DCs. T-bet– cDC2s identified as CLEC12A+Esam– and T-bet+ cDC2s as CLEC12A+Esam– cDC2s. Monocytes gated as

Lin–Ly6C+CD11b+CX3CR1+. Each symbol represents one mouse.

(E) Frequency of monocytes and indicated cDC2 subset in CCR2–/– mice and CCR2+/– littermates.

Error bars represent mean ± SEM; p values calculated using Student’s t test.
significantly more accessible in T-bet+ DCs, and 1,130 peaks

(associated with 801 genes) significantly more accessible in

T-bet– DCs (Figure 4B).

Consistent with the known role for IRF8 in cDC1 differentia-

tion, an IRF binding motif was the top motif linked to differential

chromatin accessibility in cDC1s versus cDC2s (Figure S3B).

Similarly, the T-box motif showed the strongest association
with increased chromatin accessibility in T-bet+ cDC2s (Fig-

ure 4C). Besides T-bet, other high-ranking TF motifs in T-bet+

cDC2s included Runx, Srebf, and Nr4a, as well as Rbpj, the

transcriptional mediator of Notch signaling, suggesting that

these TF family members are likely major contributors to regula-

tion of gene expression in T-bet+ cDC2s (Figure 4C). Of note,

the motif for Nfil3, a TF previously shown to regulate cDC1
Cell 179, 846–863, October 31, 2019 851



Figure 4. Transcriptional and Epigenetic Landscape of cDCs

(A) Heatmap showing differentially accessible ATAC-seq peaks in cDC1s, T-bet+ cDC2s, and T-bet– cDC2s. Color bar, accessibility Z score.

(B) ATAC-seq analysis of chromatin accessible sites in cDC2s. Peaks shown in purple showed increased read count in T-bet+ cDC2s, peaks shown in red were

enriched in T-bet– cDC2s.

(C) Predictive value of TF motifs in peaks more accessible in T-bet– cDC2s (red) or T-bet+ cDC2s (green).

(D) Heatmap reporting scaled expression of predicted transcriptional regulators in T-bet– cDCs versus T-bet+ cDC2s. Color bar, accessibility Z score.

(E) Correlation between average differential accessibility of peaks associated with a gene and gene expression in T-bet+ versus T-bet– cDC2s.

(F) Diamond plot showing gains and losses of regulatory elements for top 20 most differentially expressed genes in T-bet+ versus T-bet– cDC2s. Each diamond

represents a chromatin accessibility peak associated with the indicated gene. Green denotes ATAC-seq peaks that gained accessibility in T-bet+ cDC2s, red

diamonds denote peaks that lost accessibility. The bottom-most peak on the y axis corresponds to the log2FC in differential expression of the gene.

See also Figure S3 and Table S4.
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development (Kashiwada et al., 2011), was more highly associ-

ated with increased chromatin accessibility in cDC2s versus

cDC1s (Figure S3B). Although Nfil3 is not required for cDC2

generation, our data suggest a potential role for Nfil3 in regu-

lating some aspects of cDC2 function. In T-bet– DCs, the

RORE motif was associated with T-bet– cDC2-specific peaks

(Figure 4C), consistent with a role for RORgt+ in regulation

of gene expression in these cells along with members of

CCAAT-enhancer binding protein (C/EBP) and nuclear factor I

(NFI) families of TFs. Analysis of TF expression confirmed

enrichment of the predicted transcriptional regulators in the

respective DC subset, including Nr4a2 and Nr4a3 for T-bet+

DCs, and Cebpa and Nfix for T-bet– DCs (Figure 4D). Notably,

a number of predicted TFs did not exhibit differential gene

expression suggesting post-transcriptional mechanisms regu-

lating their activity.

To link differentially accessible cis-regulatory elements to

subset-specific gene expression, we assigned ATAC-seq

peaks to the nearest genes and observed correlation of differ-

entially accessible peaks with differential gene expression as-

sessed by RNA-seq analysis of cDC subsets (Figures 4E and

S3C). Among the genes most upregulated in T-bet– cDC2s

were Rorc and S1pr1, while genes such as Tbx21, Cr2, and

Cdh17 were downregulated concordantly with a closed state

of chromatin at their multiple cis-regulatory elements (Fig-

ure 4F). Collectively, these data identify distinct sets of tran-

scriptional regulators operational in the newly identified cDC2

subsets. Given the unique transcriptional identity of the two

cDC2 subsets, we consider these to be distinct lineages and

henceforth refer to these DCs as cDC2A (T-bet+) and cDC2B

(T-bet–).

Ontogeny of cDC2 Subsets
DCs arise from myeloid progenitors that differentiate first in

the bone marrow (BM) and then in the spleen. To determine

where and at what stage of differentiation the divergence of

cDC2s into the two identified subsets occurs, we isolated

macrophage and DC progenitors (MDP), common DC progeni-

tors (CDP), and pre-DCs from the BM of Tbx21RFP-Cre mice

(Figure S4A) and transferred them into CD45.1 congenic mice.

Analysis of splenic DCs 7 days after transfer demonstrated

that MDP, CDP and pre-DCs could give rise to both cDC2A

(T-bet+) and cDC2B (T-bet–) (Figure 5A) indicating that both

cDC2 subsets arise relatively late within the same develop-

mental pathway. Thus, even though some monocyte associated

genes were enriched in cDC2B, these cells appear to arise from

classical DCs consistent with their expression of Zbtb46 (Fig-

ure 3A). Single-cell analysis of DC progenitors in the BM has

identified immediate precursors poised for either cDC1 or

cDC2 cell fate (Grajales-Reyes et al., 2015; Schlitzer et al.,

2015) raising the possibility that cDC2A and cDC2B emerge

during differentiation in the BM. However, our analysis of BM

progenitors for expression of T-bet or RORgt in Tbx21RFP-Cre

or RorcCre-Rosa26lsl-YFP mice, respectively, failed to reveal any

progenitor cells expressing T-bet (RFP) or RORgt (YFP) at any

stage of BM differentiation (Figure 5B). This suggests that

cDC2s acquire specific transcriptional profiles in the periphery,

likely in response to environmental cues.
To gain further insights into developmental relationships

between cDC2 subsets, we applied the Palantir algorithm to

model DC fate commitment using pseudo-time (Setty et al.,

2018). Consistent with a progenitor phenotype, cells in the puta-

tive Siglec-H+ pre-DC population (cluster 11; Figure 1E) were

distinguished by high levels of Flt3 (Figure S4B), known to regu-

late DC differentiation (McKenna et al., 2000), and by genes

related to cell division (Stmn1 and Tuba1a; Figure S4B). There-

fore, we specified the starting point for Palantir within this

pre-DC population to characterize potential differentiation tra-

jectories from the Siglec-H+ cells toward cDC2A and cDC2B.

Given that cell-cycle signatures can confound differentiation

trajectories, we employed factor analysis to remove cell-cycle

effects before applying Palantir (Buettner et al., 2017). The re-

sults were visualized using t-SNE embedding of diffusion com-

ponents (Figure 5C).

From the Siglec-H+ cluster starting point, Palantir determined

terminal states in both T-bet+ and T-bet– clusters (Figures 5D

and S4B). The differentiation potential rapidly diminished upon

exit from the Siglec-H+ cluster for both cDC2A and cDC2B

clusters (Figure S4C) with robustness analysis supporting the

possibility of both cDC2 subsets arising from a common

splenic Siglec-H+ DC progenitor (Figures S4D and S4E). Exami-

nation of transcripts varying along these trajectories revealed

the successive downregulation of Bst2, Lag3, Sox4, Flt3,

Tmem176a, and Tmem176b along with upregulation of Tbx21,

Id2, CD86, Klf2, and Klf4 (Figures 5D and 5E). Cells that differen-

tiated into cDC2B retained expression of Tmem176a and

Tmem176b and upregulated CD86 and Klf4 (Figures 5D and

5E) suggesting an increasing state of maturity. Together, these

analyses highlight cDC2 differentiation paths within the spleen

and define genes associated with cDC2 specification.

Although the pre-DC population shared a number of genes

with cDC2s, they could be distinguished based on the absence

of Itgam (CD11b) expression (Figure 1E) and by unique expres-

sion of Siglech (Figure S4F). Flow cytometric analysis validated

the presence of these precursor cells in the spleen (Figure 5F).

Siglec-H+ pre-DCs were enriched in CD11cintMHCIIint cells

(Figure 5F), indicative of an immature DC phenotype. Tmem176a

and Tmem176b were highly expressed by cells within the

Siglec-H+ cluster (Figures 5E and S4F) suggesting that RORgt

expression was acquired prior to their differentiation into

mature cDC2 subsets. Given the absence of Rorc expression

at the pre-DC stage (Figure 5A), we reasoned that the expression

of Rorc by the putative Siglec-H+ precursor would allow us to

follow their developmental trajectory using genetic fate-

mapping of this population in RorcCreRosa26lsl-YFP mice. This

analysis revealed the presence of YFP+ cells in both cDC1 and

cDC2 subsets (Figure 5G). Furthermore, RNA-seq analysis of

sorted YFP+ cDC2s demonstrated a gene signature encom-

passing both cDC2A and cDC2B defining genes (Figure 5H)

suggesting that at least some of the cells in both of these

subsets can originate from a RORgt+ precursor. MHCII expres-

sion has been described in a subset of ILC3s (Gury-BenAri

et al., 2016; Hepworth et al., 2013). To confirm that RORgt-ex-

pressing DCs were distinct from MHCII+ ILC3s, we compared

the transcriptomes of RORgt fate-mapped cDC2s to those

of splenic MHCII+ ILC3s (Figure S4G). As expected, genes
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upregulated in MHCII+ ILC3s included signature ILC3 genes (Il7r,

Il23r, Cxcr6, Tox, Ets1) (Figure S4H). Conversely, RORgt fate-

mapped cDC2s expressed canonical DC genes (Dpp4 and

Flt3) (Figure S4H). Last, FACS sorted Siglec-H+ DCs transferred

into congenically marked recipient mice gave rise to both

splenic cDC2 populations (Figure S4I), confirming their progeni-

tor nature.

The frequency of cDC2A varied across peripheral lymphoid

and non-lymphoid tissues (Figure 1B). cDC2As were enriched

at mucosal barrier sites (Figure 1B), indicating a potential role

for the microbiota in driving T-bet expression. Accordingly,

we observed dramatic increases in the frequency of intestinal

cDC2A between birth and weaning, a period associated with

increased microbial colonization (Figure 5I). To assess the

impact of microbiota on cDC2 composition, we administered

a cocktail of broad-spectrum antibiotics to pregnant females

and analyzed cDC2 phenotypes in adult offspring maintained

on antibiotics. Antibiotic treatment resulted in reduced fre-

quencies and numbers of cDC2A within the intestine but not

the spleen compared to age-matched untreated mice (Fig-

ure 5J). This suggests that microbiota dependent signals pro-

mote T-bet expression at least in some DCs. A recent study

reported induction of T-bet expression in mediastinal LN DCs

in response to tumor necrosis factor alpha (TNF-a) or lipopoly-

saccharides (LPS) stimulation (Bachus et al., 2019). While we

also observed increased frequencies of T-bet+ cDC2As

following infection with pathogens known to induce type 1

inflammation (data not shown), we found that IFN-g, but not

TNF-a or TLR signaling, promotes T-bet expression in DC

(Figure S4J). Overall, these results suggest that signals within

the tissue microenvironment direct cDC2 differentiation toward

T-bet+ cDC2A.

cDC2A and cDC2B Have Distinct Phenotypic and
Functional Properties
To assess potential functional differences between cDC2 sub-

sets, we examined differential expression of genes encoding

immune modulatory and signaling molecules including TLRs,

cytokines, chemokines, chemokine receptors, and molecules

related to antigen processing and presentation. The two

cDC2 subsets markedly varied from one another and from
Figure 5. Environmental Cues Drive Distinct DC2 Differentiation Pathw

(A) Derivation of splenic CD11b+ DC subsets from bonemarrow (BM) progenitors.

CDP recipients (n = 3) or pre-DC recipients (n = 6) from 3 independent experime

(B) Analysis of YFP in BM progenitors from RorcCreRosa26lsl-YFP mice (top) or RF

(C) t-SNE embedding of diffusion map of T-bet+, Tbet– cDC2, and Siglec-H+ pre

(D) Palantir branch probabilities fromSiglec-H+ pre-DC to T-bet+ cDC2 (top) or Tbe

corresponding trajectories.

(E) Expression of genes identified as varying significantly along the trajectory fro

(F) Expression of Siglec-H in Lin–CD90–Ly6C–CD64–CD11c+MHCII+ cells. Far rig

(G) Representative plot showing percentage of YFP+ cells in splenic cDC1 and c

(H) Heatmap showing expression of genes differentially expressed between b

(fm) cDC2s.

(I) Frequency of T-bet+ cDC2s within the spleen, MLN, large intestine lamina prop

n = 3 per time point, error bars represent mean ± SEM. For the day 7 analysis S

(J) Generation of T-bet+ cDC2s in mice treated with a broad-spectrum antibiotic c

represent mean ± SEM.

See also Figure S4 and Table S5.
cDC1s in expression of TLR genes: cDC1s exclusively ex-

pressed TLR3, TLR11, and TLR12, whereas cDC2B preferen-

tially expressed TLR1, TLR2, TLR5, TLR6, TLR7, TLR8, and

TLR9 (Figure 6A). The expression of most of these TLRs was

notably absent or reduced in cDC2A with the exception of

TLR1, TLR5, and TLR7 (Figure 6A). Thus, the identified cDC2

subsets are capable of sensing and responding to distinct

sets of innate immune stimuli. Furthermore, genes encoding

chemokines and chemokine receptors, as well as cytokines

receptors, also exhibited distinct expression patterns across

the three cDC subsets (Figure 6A). cDC2B exclusively ex-

pressed Cxcl2, Ccl6, and Ccl9, whereas cDC2A had increased

expression of Ccl3, Ccl4, and Ccl5 (Figure 6A). While the

expression of several other chemokines was shared between

cDC2B and cDC1s, they were notably absent from cDC2A

(Figure 6A). The unique repertoires of chemokines and chemo-

kine receptors expressed by the two cDC2 subsets indicate

divergent functions in vivo.

The current view holds that cDC1s initiate CD8 T cell re-

sponses while cDC2s prime CD4 T cells (Dudziak et al., 2007;

Hildner et al., 2008). To determine if the cDC2 lineages have

differential abilities to polarize CD4 T cells, we first compared

cytokine gene expression across the cDC subsets. cDC2B had

significantly higher expression of genes encoding IL-1a and

IL-27 (Figure 6A), whereas cDC2A expressed higher levels of

transcripts associated with tissue repair such as amphiregulin

(Areg) and the metalloproteinase MMP-9 (Figure 6A). MMP9

has been shown to modulate cytokine activity through activa-

tion of TGF-b (Yu and Stamenkovic, 2000) and via inhibition

of IL-23 expression (Oriss et al., 2014). To further explore the

pro- and anti-inflammatory potential of cDC2 subsets, we

analyzed their responses to R848, an agonist for TLR7 whose

expression was similar in both cDC2 subsets. cDC2A secreted

significantly less TNF-a and IL-6 than their cDC2B counterparts

suggesting a markedly lower pro-inflammatory potential of

the former (Figure 6B). We also observed reduced levels of

pro-inflammatory cytokines by cDC2A upon stimulation with

CpG (Figure S5A), further highlighting functional differences be-

tween cDC2 subsets. In the steady state, both cDC2 subsets

displayed equivalent levels of MHC class II, co-stimulatory mol-

ecules, and PDL1. However, cDC2B expressed higher levels of
ays within the Spleen

Shown are splenic cDC2s 7 days post transfer. Data representative of MDP and

nts.

P expression in cells from Tbx21RFP-cre mice (bottom).

-DC clusters identified in Figure 1E.

t– cDC2 (bottom) terminal states. Gene expression trends in pseudo-time along

m the pre-DC cluster to T-bet+ or Tbet– cDC2.

ht: overlay of Siglec-H+ DCs against all MHCII+CD11c+ DCs.

DC2 populations in RorcCreRosa26lsl-YFP mice.

ulk T-bet+ and Tbet– cDC2s across T-bet+, Tbet–, and Rorgt fate-mapped

ria (LI), and small intestine lamina propria (SI) at indicated time point post birth.

I and LI tissues were pooled from 2 mice per sample.

ocktail (AVKM) or H2O (control). Each symbol represents one mouse. Error bars
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Figure 6. T-bet+ and T-bet– cDC2s Are Phenotypically and Functionally Distinct

(A) Heatmap of select TLRs, chemokines, cytokines, and their receptors for genes differentially expressed between bulk cDC1s, T-bet+, and T-bet– cDC2s.

(B) Cytokines detected in culture supernatant 18 h after stimulation with R848, analyzed using a multiplexed cytokine assay. Data are mean ± SEM from triplicate

culture wells.

(C) Cell surface expression of CD86, PDL1, and MHC class II on indicated DC subset 16 h after intraperitoneal (i.p.) immunization with LPS. Left: representative

overlay histogram; right: composite bar graphs of median fluorescence intensity (MFI) (n = 3).

(D) Sorted naive OTII CD4+ T cells were cultured with indicated DC subset and OVA peptide under non-polarizing (Th0) or polarizing conditions for 4 days. Bar

graphs of summary data for intracellular cytokine production following restimulation or expression of Thy1.1(Foxp3) in unstimulated cells.

Data shown as mean ± SEM; p values were calculated using two-way ANOVA (Th0) or one way ANOVA.

See also Figure S5.
co-stimulatory molecules and MHC class II upon in vivo LPS

challenge (Figure 6C).

We next isolated cDC2A and cDC2B and co-cultured them

with naive OTII CD4+ T cells along with their cognate ligand,

OVA323–339, either in the absence (‘‘Th0’’) or presence of polar-

izing cytokines. Consistent with the markedly diminished pro-in-

flammatory responses to TLR agonists, cDC2A had reduced

ability to polarize naive T cells toward IFN-g or IL-17A producing
856 Cell 179, 846–863, October 31, 2019
T cells under Th0 conditions (Figure 6D), despite similar ability

to induce T cell proliferation (Figure S5B). Diminished IL-17 pro-

duction was also observed under Th17 polarizing conditions

(Figure 6D). Both cDC2 subsets exhibited a similar capacity to

support Foxp3+ T cell differentiation in vitro (Figure 6C). Thus,

cDC2A and cDC2B are phenotypically and functionally distinct

and are likely to have divergent anti- and pro-inflammatory roles

in vivo.



Identification of Novel cDC2 Subsets in Humans
Similar to mouse cDC1s, human cDC1s express XCR1 and

CLEC9A whereas cDC2s are defined by CD1c expression (Cro-

zat et al., 2010; Dzionek et al., 2000; Huysamen et al., 2008).

Comparative transcriptomics and functional studies have

demonstrated correspondence between mouse and human

cDC subsets (Haniffa et al., 2012; Robbins et al., 2008). To deter-

mine if counterparts of the newly characterized mouse cDC2

subsets exist in human blood we examined the correlation be-

tween gene expression characteristic of the identified mouse

DC clusters and gene signatures of human DCs extracted from

a recently published scRNA-seq analysis of human peripheral

blood myeloid cells (PBMCs) (Villani et al., 2017). In the latter

study, two subsets of human cDC2s were identified (dubbed

‘‘DC2’’ and ‘‘DC3’’). Consistent with previous studies demon-

strating that CLEC10A is expressed by all human CD1c+

cDC2s (Heidkamp et al., 2016; Heger et al. 2018), both ‘‘DC2’’

and ‘‘DC3’’ clusters expressed CLEC10A (Figure 7A), indicating

that CD1c+ cDC2s may be analogous to the CLEC10A+ cDC2B

subset identified in mice. Flow cytometric analysis of PBMCs

from 4 independent donors confirmed that blood CD1c+ DCs

are uniformly CLEC10A+ (Figure 7B). To determine the relation-

ship between mouse and human cDC2 subsets, we compared

the similarity of orthologous signature gene expression for

each DC cluster. We found that the previously reported division

in human blood cDC2 subsets did not align with the cDC2 divi-

sion observed in mice (Figure 7C). Instead, cDC2B genes were

upregulated in both previously reported human peripheral blood

cDC2 subsets (Figure 7C). Tmem176a- and Tmem176b-ex-

pressing cells were present at high frequency and Rorc tran-

script was detectable, albeit at low frequency, in human ‘‘DC3’’

cells (Figure S6A). Collectively these data indicate that human

peripheral blood CD1c+CLEC10A+ cDC2s are analogous to mu-

rine cDC2B cells. The lack of human cDC2A in the peripheral

blood was consistent with the absence of the corresponding

subset in mouse PBMCs (Figure S6B).

To identify human counterparts to the mouse

cDC2A subset, we undertook a scRNA-seq analysis of

Lin(CD3,CD56,CD19)–CD14–CD11c+HLA-DR+ DCs isolated

from human spleen (Figure S6C). Clustering of 4,465 single-cell

transcriptomes using Phenograph identified 11 clusters (Fig-

ure 7D). Analysis of canonical human myeloid genes (Figure 7E)

revealed three clusters encompassing CLEC9A+XCR1+ cDC1

cells, one cluster distinguished by high levels of CCR7 expres-

sion, a cluster corresponding to the recently characterized AXL+

SIGLEC6+ (‘‘AS’’) pre-DCs, 2 clusters of mitotic DCs, and 5 re-

maining clusters classified as cDC2s based on their expression

of IRF4 and CLEC4A (DCIR) (Bajaña et al., 2016; Vu Manh

et al., 2015). Of the cDC2 clusters, 2 contained the canonical

CD1c+CLEC10A+ subset while the remaining 2 clusters (3 and

4) expressed lower levels of CD1c transcript and lacked

CLEC10A (Figure 7E). Flow cytometric analysis of DCs from

the original sample and three additional spleen samples

confirmed the existence of two major distinct populations of

human CD1c+ cDC2s, delineated by CLEC10A expression

(Figure S6D). In agreement with the scRNA-seq analysis (Fig-

ure 7E), CLEC10A+ cDC2 cells were distinguished by increased

cell-surface expression of FcεR1a and reduced expression of
CLEC4A compared to their CLEC10A– counterparts (Fig-

ure S6E). These data suggest that CD1c+CLEC10A+CLEC4Alo

cDC2 and CD1cloCLEC10A–CLEC4Ahi cDC2s are human coun-

terparts of cDC2B and cDC2A, respectively.

Analysis of genes differentially expressed between DC clus-

ters showed that gene signatures of human cDC2A and

cDC2B subsets included mouse cDC2 subset signature gene

(Figure 6F). Similar to the division in mouse cDC2s, human

cDC2B exhibited a more pro-inflammatory phenotype with

increased expression of IL1B, whereas human cDC2A ex-

pressed higher levels of transcript for amphiregulin (AREG),

IDO1, the immunomodulatory receptor CD300a, and IL22

binding protein (IL22RA2) (Figure 7F). To determine the overall

correspondence between mouse and human DC subsets, we

compared the similarity of orthologous genes signatures for

each splenic DC cluster. This confirmed that human CLEC10A+

cDC2s aligned with mouse cDC2B, whereas CLEC10A– cDC2s

showed a greater degree of correspondence with mouse

cDC2A (Figure 7G). We reasoned that if overall transcriptional

features of cDC2 subsets were conserved across species,

transcriptional regulators and genes reflecting functional

specialization would also be conserved. Indeed, unsupervised

clustering of TF gene expression profiles in mouse and human

cDC2s confirmed the transcriptional basis for division of

cDC2A and cDC2B in both species (Figure 7H) and demon-

strated an overlap between the defining mouse and human

TFs for each cDC2 subset (Figure 7I). cDC2 transcriptional

regulators identified in mice showed clear concordant patterns

of expression in human cDC2 subsets with differential expres-

sion of RUNX3, NR4A2, NR4A3, SREBF2, and CEBP family

member transcripts delineating CLEC10A+ and CLE-

C10A–cDC2s (Figure 7J). In addition to TFs, genes associated

with lipid antigen presentation and metabolism (CD1E, NPC2,

PSAP) were enriched in CLEC10A+ cDC2B (Figures 7F and 7J),

analogous to mouse cDC2B. Human cDC2A cells were notable

for their expression of CD3E (Figure 7F). Notch signaling

has been shown to induce intracellular expression of CD3ε

in human natural killer (NK) cells (De Smedt et al., 2007), suggest-

ing that Notch signaling may be a conserved feature between

mouse and human cDC2A. Together, these findings indicate

that functional division between cDC2A and cDC2B is likely

conserved.

Human and mouse CCR7+ DC clusters also exhibited a

similar transcriptional signature (Figure 7G), indicating a

conserved phenotype. AS DCs were distinguished by high

expression of PPP1R14A and DAB2, signature genes previ-

ously defined in their peripheral blood counterparts (Villani

et al., 2017; Figure 7F). In addition, AS DCs resembled the mu-

rine Siglec-H+ pre-DC, confirming the existence of a splenic

progenitor DC with overlapping features of pDCs and cDC2s

in both species. As with the murine cDC2s, we employed

diffusion maps to assess the relationships between the AS

DC and human cDC2 subsets identified. This analysis revealed

branches connecting the AS pre-DC cluster to both cDC2

subsets, in particular the mitotic cDC2 cluster (Figure 7K).

Enrichment of Wnt signaling pathways in AS DCs (Table S5)

observed by GSEA suggests an important role for Wnt in DC

differentiation.
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We reasoned that the observed pro-inflammatory properties

of mouse T-bet– cDC2s might suggest their role in tissue

inflammation whereas the markedly diminished inflammatory

potential of T-bet+ cDC2s suggests that this subset might be

enriched in environment with prominent tissue remodeling

and repair and immunomodulatory features such as tumors.

To assess human cDC2 heterogeneity and specifically the

presence of cDC2A within the tumor microenvironment, we

performed scRNA-seq analysis of immune cells from human

melanoma. We analyzed FACS-isolated CD45+ cells from two

patients (Table S6) and identified 2,122 myeloid cells (Figures

S6E and S6F). Re-clustering of the myeloid cells to achieve

greater resolution identified 13 clusters comprising monocytes,

macrophages, pDCs, and cDC2s (Figures S6G – S6I). CD1c+

cDC2s (clusters 4 and 12) were patient-specific (Figure S7G)

with TBX21-expressing cells identified within a patient-specific

CD1c+ cluster (cluster 12; Figure S6I). Genes significantly

upregulated in this cluster included signature cDC2A genes

such as AREG and NR4A3 (Figure S6; Table S7). Collectively,

these analyses confirm that cDC2A (T-bet+) and cDC2B

(T-bet�) counterparts are present within human tissue and

share key transcriptional regulators and phenotypes with the

corresponding mouse cDC2 lineages.

DISCUSSION

In this study, we analyzed the transcriptional landscape and

heterogeneity of murine DCs. We found that mouse cDC2s, in

semblance of major ILC or CD4 T cell subsets, can be broadly

divided into two subsets, delineated by T-bet (cDC2A) or its

absence (cDC2B). The latter cDC2B subset expressed RORgt

along with C/EBP family members. Analysis of defining gene

signatures for each cDC2 subset suggests a high degree of

functional specialization within cDC2s and may be indicative of

division of labor between cDC2A and cDC2B. We extended

these findings to human splenic DCs by demonstrating a similar

sub-division among human CD1c+ cDC2s through identification

of conserved transcriptional regulators and distinguishing

marker genes. Of note, human blood harbors only the cDC2B
Figure 7. Conservation of DC Subsets across Species

(A) t-SNE map of human peripheral blood DCs from Villani et al. (2017), colore

right panel).

(B) Expression of CD1c and CLEC10A within peripheral blood cDC2s. Bar graph

(C) Distribution of expression changes between T-bet+ and T-bet– cDC2s. Genes u

are shown.

(D) t-SNE map of 4,465 human splenic DCs. Colors indicate unsupervised clust

markers (right). Each dot represents an individual cell.

(E) Expression of canonical myeloid genes across the transcriptionally defined D

(F) Heatmap reporting scaled, imputed expression for the top differentially expre

(G) Pearson correlation between human and mouse spleen scRNA-seq DC clust

(H) Heatmap reporting scaled, imputed expression for the 103 top varying TF ge

determined using Phenograph and columns are ordered by the annotated cDC2

(I) Heatmap reporting overlap of top varying TF genes for mouse and human TF ge

belong to both the mouse (rows) and human TF gene cluster (columns) indicated

their expression profile in (H).

(J) t-SNE map of human splenic DCs colored by imputed expression of canonical

and bottom) identified in Figures 2A and 3D.

(K) Diffusion component analysis of human spleen DC clusters identified in (D) ill

See also Figure S6 and Tables S5, S6, and S7.
population, highlighting the importance of studying human DCs

within lymphoid tissues.

Although potential heterogeneity within the cDC2 population

has been suggested by differential expression of cell surface

markers, such as Esam and Mgl2 (Kumamoto et al., 2009; Lewis

et al., 2011), these markers vary across tissues and it was un-

clear if cDC2s identified by these markers represent separate

cDC2 subsets. Our study revealed the existence of distinct

cDC2 lineages, their transcriptional identity and developmental

origins. We show that splenic cDC2s previously identified by

cell surface expression of Esam largely belong to the cDC2A

subset. In contrast to Esam+ cells that have only been identified

in the spleen and MLN (Lewis et al., 2011; Satpathy et al., 2013),

we find T-bet+ cDC2A present throughout lymphoid and non-

lymphoid tissue. T-bet– cDC2B encompass Mgl2+ DCs, previ-

ously identified in the spleen and skin draining LNs, and are

the predominant cDC2 subset in a number of tissues. The

finding that RORgt expression is associated with a major

subset of cDC2s is notable because it was thought that RORgt

expression was restricted to thymocytes, Th17 cells, and

ILC3s (Eberl et al., 2004). Furthermore, MHC class II gene abla-

tion in Rorc-expressing cells has been used to assess antigen-

presenting function of ILC3s (Hepworth et al., 2013, 2015;

Melo-Gonzalez et al., 2019), which was proposed to be impor-

tant for mucosal T cell tolerance and Tfh differentiation (Hep-

worth et al., 2013; Melo-Gonzalez et al., 2019). A possible contri-

bution of MHC class II loss by RORgt-expressing cDC2B or

Siglec-H+ pre-DC to these effects needs to be considered.

The distinguishing features of cDC2 subsets identified provide

a framework for future exploration of their development and

function in steady state and inflammation. In addition to T-bet

and RORgt, in silico modeling suggested that several other TFs

with differential activity in cDC2A versus cDC2B subsets are

likely working in consort to generate their unique gene expres-

sion patterns. Runx, a known binding partner for T-bet in

T cells (Djuretic et al., 2007; Lazarevic et al., 2011), was highly

predictive of increased chromatin accessibility in cDC2A, along

with Srebf2. Although Srebf2 was not differentially expressed

between mouse cDC2 subsets, changes in intracellular pH can
d by cell type or log-transformed expression of labeled genes (middle and

shows summary frequencies for four individual donors.

p- or downregulated in human ‘‘DC2’’ versus ‘‘DC3’’ cDC2s (Villani et al., 2017)

ering by Phenograph (left) or classification based on expression of canonical

C clusters from (D).

ssed genes for each cluster identified in (D).

ers. Mouse spleen DC clusters from Figure 1E.

nes across cDC2s in each species. Rows are ordered by the TF gene cluster

cluster.

ne clusters identified in (H). Each colored count indicates the number of TFs that

. TF gene clusters are further annotated with the cDC2 subset concordant with

human DC genes (top) or cDC2 lineage-defining TF and marker genes (middle

ustrating gradients from ‘‘AS’’ DCs to cDC2A and cDC2B clusters.

Cell 179, 846–863, October 31, 2019 859



target translocation of Srebf2 to the nucleus (Kondo et al., 2017),

which may link observed differences in metabolic profiles of

cDC2s to their transcriptional outputs.

In addition to delineating cDC2 heterogeneity, we identified

additional DC subsets including a population of CCR7hi DCs

within CD11b–XCR1– cells that transcriptionally aligned with

MHCIIhi ‘‘migratory’’ DCs isolated from skin-draining LNs. These

cells have not previously been observed within the spleen. In

addition, we identified a splenic Siglec-H+ DC progenitor,

comprising �0.4% of CD11c+MHCII+ cells, with a mixed

cDC2-pDC phenotype akin to CD11c+HLA-DR+CD123+ pre-

DCs recently described in separate single-cell analyses of

human DCs (See et al., 2017; Villani et al., 2017). Siglec-H+ DC

progenitors with pDC and cDC potential have previously been

identified within the bonemarrow (Schlitzer et al., 2015). A recent

study showed that expression of BM Siglec-H+Ly6C– pre-DCs

expressing Bst2 and Tcf4, analogous to the pre-DCs identified

in our dataset, were committed to the pDC lineage (Dress

et al., 2019). However, our data would suggest that these pro-

genitors retain cDC potential. Further studies are required to

assess the significance of this DC differentiation pathway as

well as the relationship between BM-derived pre-DCs and the

splenic Siglec-H+ precursor.

Our findings that bone marrow DC progenitors lack expres-

sion of T-bet and RORgt suggest that cDC2s acquire expres-

sion of the respective TFs in response to environmental cues.

Indeed, perturbation of the commensal microbiota upon

chronic antibiotic treatment led to alterations in the frequency

of T-bet+ cDC2s within the affected tissues. Although these find-

ings were seemingly in line with a recent study, in which

increased TNF-a levels observed in allergic Th2 lung inflam-

mation were proposed to influence the induction of T-bet

expression in cDC2s in mediastinal LNs (Bachus et al., 2019),

we observed T-bet induction in DCs in response to IFN-g, but

not TNF-a or TLR stimulation by LPS or CpG consistent with

STAT1-dependence of T-bet expression (Lighvani et al., 2001).

Our studies suggest that the newly defined cDC2s likely

have distinct roles in the recruitment and activation of immune

effector cells. Both mouse and human cDC2A were distin-

guished from cDC2B by expression of Areg, a molecule linked

to tissue repair, raising the possibility of an important role in

cDC2 function. One of the main challenges of ascribing distinct

functional roles to cDC2 subsets has been the lack of DC-spe-

cific markers that could be used to deplete cDC2 subsets. Pre-

vious efforts to determine functional roles of cDC2s have relied

on the use of CD11c transgene encoded Cre recombinase to

target cDC2 subsets through the deletion of IRF4, Klf4, or com-

ponents of the Notch signaling pathway (Gao et al., 2013; Lewis

et al., 2011; Satpathy et al., 2013; Schlitzer et al., 2013). One

caveat to these experiments is the expression of CD11c by

non-DCs including macrophages, NK cells, T cells, and plasma

cells (Caton et al., 2007; Hebel et al., 2006; Jung et al., 2002;

van Rijt et al., 2005). Furthermore, we found that neither IRF4

nor Klf4 expression distinguishes the cDC2 subsets identified.

The distinct expression of T-bet, RORgt, along with other

discriminatory TFs in particular subsets of DCs will allow

the development of novel genetic means of targeting cDC2 sub-

sets with increased precision and further elucidation of their
860 Cell 179, 846–863, October 31, 2019
function in tissue homeostasis and immune regulation. The cor-

respondence between the newly defined cDC2 subsets across

species provides a framework for the translation of mouse den-

dritic cell studies into knowledge of their functions in human

health and disease.
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Antibodies

Anti-mouse CD86 (AlexaFluor700) ThermoFisher Cat#17-0862-82; RRID: AB_469419; Clone: GL-1

Anti-mouse PDL1 (PE-Cy7) BioLegend Cat#124313; RRID: AB_10639934; Clone: 10F.9G2

Anti-mouse CD115 (APC) Tonbo Bioscience Cat#20-1152; RRID:AB_2621586; Clone AFS98

Anti-mouse CD117 (APC-eFluor 780) ThermoFisher Cat#47-1172-82; RRID:AB_1582226; Clone ACK2

Anti-mouse CD11b (BV605) BioLegend Cat#101237; RRID:AB_11126744; Clone Mac-1

Anti-mouse CD11b (BUV395) BD Biosciences Cat#563553; RRID:AB_2738276; Clone M1/70

Anti-mouse CD11b (VioletFluor450) Tonbo Biosciences Cat# 75-0112; RRID:AB_2621936; Clone M1/70

Anti-mouse CD11c (APC) BD Biosciences Cat#550261; RRID:AB_398460; Clone HL3

Anti-mouse CD11c (BV605) BD Biosciences Cat#550261; RRID:AB_398460; Clone HL3

Anti-mouse CD11c (FITC) BD Biosciences Cat#553801; RRID:AB_395060; Clone HL3

Anti-mouse CD11c (PE) Tonbo Biosciences Cat#50-0114; RRID:AB_2621747; Clone N418

Anti-mouse CD135 (PE) ThermoFisher Cat#12-1351-82: RRID:AB_465859; Clone A2F10

Anti-mouse CD172a (BV605) BD Biosciences Cat#740390; RRID:AB_2740120; Clone P84

Anti-mouse CD19 (BV421) BioLegend Cat#115549; RRID:AB_2563066; Clone 6D5

Anti-mouse CD19 (BUV395) BD Biosciences Cat#563557: RRID:AB_2722495; Clone 1D3

Anti-mouse CD19 (PE-Cy7) ThermoFisher Cat#25-0193-82; RRID:AB_657663; Clone eBio1D3

Anti-mouse CD25 (APC) ThermoFisher Cat#17-0251-82; RRID:AB_469366; Clone PC61

Anti-mouse CD3e (BV421) BioLegend Cat#100336; RRID:AB_11203705; Clone 145-2C11

Anti-mouse CD4 (BV605) BioLegend Cat#100548; RRID:AB_2563054; Clone RM4-5

Anti-mouse CD4 (PE) ThermoFisher Cat#12-0042-82; RRID:AB_465510; Clone RM4-5

Anti-mouse CD44 (AF700) BioLegend Cat#103026; RRID:AB_493713; Clone IM7

Anti-mouse CD45 (BV570) BioLegend Cat#100548; RRID:AB_2562612; Clone 30-F11

Anti-mouse CD45.1 (APC-Cy7) Tonbo Biosciences Cat#25-0453; RRID:AB_2621629; Clone A20

Anti-mouse CD45.2 (APC) ThermoFisher Cat#17-0454-82; RRID:AB_469400; Clone 104

Anti-mouse Siglec-F (BV421) BD Biosciences Cat#562681; RRID: AB_2722581; Clone: E50-2440

Anti-mouse Ly-6C (BV711) BioLegend Cat#128037; RRID: AB_2562630; Clone: HK1.4

Anti-mouse CD45R (Violetfluor450) Tonbo Biosciences Cat#75-0452; RRID:AB_2621948; RA3-6B2

Anti-mouse CD49b (Pacific Blue) BioLegend Cat#108917; RRID:AB_2249376; Clone DX5

Anti-mouse CD62L (BV605) BioLegend Cat#104438; RRID:AB_2563058; Clone MEL-14

Anti-mouse CD90.2 (APC-eFluor780) ThermoFisher Cat#47-0902; RRID:AB_1272187; Clone 53-2.1

Anti-mouse CD90.2 (PE-Cy7) BioLegend Cat#140309; RRID:AB_10645336; Clone 53-2.1

Anti-mouse CX3CR1 (BV785) BioLegend Cat#149029; RRID:AB_2565938; Clone SA011F11

Anti-mouse Ly-6C (APC-eFluor780) ThermoFisher Cat#47-5932-82; RRID:AB_2573992; Clone HK1.4

Anti-mouse Ly-6G (PE-Cy7) BioLegend Cat#127618; RRID:AB_1877261; Clone 1A8

Anti-mouse MHC Class II (I-A/I-E)

(redFluor710)

Tonbo Biosciences Cat#80-5321; RRID:AB_2621997; Clone M5/

114.15.2

Anti-mouse NK1.1 (eFluor 450) ThermoFisher Cat#48-5941-82; RRID:AB_2043877; Clone PK136

Anti-mouse Sca-1 (PE-Cy7) BioLegend Cat#25-5981-82; RRID:AB_469669; Clone D7

Anti-mouse Siglec-H (PE) BioLegend Cat#129606; RRID:AB_2189147; Clone 551

Anti-mouse TCR-b (APC-Cy7) BioLegend Cat#109220; RRID:AB_893624; Clone H57-597

Anti-mouse XCR1 (BV650) BioLegend Cat#148220; RRID:AB_2566410; Clone ZET

Anti-mouse XCR1 (PerCP-Cy5.5) BioLegend Cat#148208; RRID:AB_2564364; Clone ZET

Anti-mouse XCR1 (APC) BioLegend Cat#148206; RRID:AB_2563932; Clone ZET

(Continued on next page)
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Anti-mouse CD16/CD32 Tonbo Biosciences Cat#70-0161; RRID: AB_2621487; Clone: 2.4G2

Anti-mouse TCR vb5 (PE-Cy7) BioLegend Cat#139508; RRID:AB_2566021; Clone MR-94

Anti-mouse CD90.1 (FITC) BD Biosciences Cat#554894; RRID:AB_395585; Clone HIS51

Anti-mouse CD90.1 (APC) ThermoFisher Cat#17-0900-82; RRID:AB_469420; Clone HIS51

Anti-mouse Foxp3 (FITC) ThermoFisher Cat#11-5773-82; RRID:AB_465243; Clone FJK-16 s

Anti-mouse TCR-b (PerCP-Cy5.5) BioLegend Cat#109227; RRID:AB_1575176; Clone H57-597

Anti-mouse IL-17A (eFluor450) ThermoFisher Cat#48-7177-80; RRID:AB_11149677; Clone

eBio17B7

Anti-mouse IFN-g (FITC) Tonbo Biosciences Cat#35-7311; RRID:AB_2621724; Clone XMG1.2

Anti-mouse IL-4 (PE-Cy7) TherrmoFisher Cat#25-7042; RRID: AB_469674; Clone: BVD6-24G2

Anti-mouse CD3ε (PE-Cy7) Tonbo Biosciences Cat#60-0031; RRID:AB_2621824; Clone 145-2C11

Anti-mouse CD64 (PE-Cy7) BioLegend Cat#139314; RRID:AB_2563904; Clone X54-5/7.1

Anti-mouse CD64 (APC) BioLegend Cat#139306 RRID:AB_11219391; Clone X54-5/7.1

Anti-mouse CLEC12A (APC) BioLegend Cat#143406; RRID:AB_2564265; Clone 5D3/

CLEC12A

Anti-mouse CD301 (PerCP-Cy5.5) BioLegend Cat#145710; RRID:AB_2564579; Clone LOM-14

Anti-mouse ESAM (APC) BioLegend Cat#136207; RRID:AB_2101658; Clone 1G8/ESAM

Anti-human AXL (AF488) R&D Systems Cat#FAB154G; RRID:AB_2714170; Clone 108724

Anti-human CD11c (PE-Cy7) BioLegend Cat#337216; RRID:AB_2129790; Clone BU15

Anti-human CD123 (BV711) BioLegend Cat#306030; RRID:AB_2566354; Clone 6H6

Anti-human CD14 (APC-Cy7) BioLegend Cat#325620; RRID:AB_830693; Clone HCD14

Anti-human CD14 (BV605) BioLegend Cat#301833; RRID:AB_11126983; Clone M5E2

Anti-human CD19 (BV605) BioLegend Cat#302244; RRID:AB_2562015; Clone HIB19

Anti-human CD19 (BV785) BioLegend Cat# 302239; RRID:AB_11218596; Clone HIB19

Anti-human CD19 (FITC) BioLegend Cat#302206; RRID:AB_314236; Clone HIB19

Anti-human CD1c (BV650) BioLegend Cat#331542; RRID:AB_2800866; Clone L161

Anti-human CD1c (PerCP-eFluor710) eBioscience Cat#46-0015-42; RRID:AB_10548936; Clone L161

Anti-human CD3ε (BV605) BioLegend Cat#317321; RRID:AB_11126166; Clone OKT3

Anti-human CD3ε (PE) BioLegend Cat#300308; RRID:AB_314044; Clone HIT3a

Anti-human CD45 (AF700) BioLegend Cat#304024; RRID:AB_493761; Clone HI30

Anti-human CD45 (PE-Cy7) BioLegend Cat# 304016; RRID:AB_314404; Clone HI30

Anti-human CD56 (BV605) BioLegend Cat#318334; RRID:AB_2561912; Clone HCD56

Anti-human CD56 (FITC) BioLegend Cat#318304; RRID:AB_604100; Clone HCD56

Anti-human CLEC10A (APC) BioLegend Cat#354706; RRID:AB_11219389; Clone H037G3

Anti-human CLEC4A BioLegend Cat#355306; RRID:AB_2561626; Clone 9E8

Anti-human FcεR1a (Percp) BioLegend Cat#334616; RRID:AB_2168079; Clone AER-37

Anti-human HLA-DR (APC-Cy7) BioLegend Cat#307618; RRID:AB_493586; Clone L243

Anti-human HLA-DR (BV605) BioLegend Cat#307640; RRID:AB_2561913; Clone L243

Anti-human XCR1 (BV421) BioLegend Cat#372610; RRID:AB_2687373; Clone S15046E

Lineage cocktail antibody BD Biosciences Cat#559971; RRID:AB_10053179

Anti-mouse Ly-6G eFluor450 eBioscience Cat#48-5931-80; RRID:AB_1548797; Clone RB6-845

Anti-mouse TER-119 (eFluor450) ThermoFisher Cat#48-5921-82; RRID:AB_1518808; Clone TER-119

Biological Samples

Melanoma Memorial Sloan Kettering

Cancer Center

See Table S6 for a list of patients included in

this study.

Human HLA-DR+CD11c+ splenic cells, adult Memorial Sloan Kettering

Cancer Center

See Table S6 for a list of patients included in

this study.

(Continued on next page)
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Chemicals, Peptides, and Recombinant Proteins

Phorbol 12-myristate 13-acetate (PMA) Millipore Sigma Cat#P8139

Ionomycin calcium salt Millipore Sigma Cat#I0634

Brefeldin A Millipore Sigma Cat#B7651

Monensin sodium salt Millipore Sigma Cat#M5273

Ghost Dye Violet 510 Tonbo Biosciences Cat#13-0870

Ghost Dye Red 780 Tonbo Biosciences Cat#13-0865

Sytox Blue Dead Cell Stain ThermoFisher Cat#S34857

Trizol Reagent ThermoFisher Cat#15596018

CellTrace Violet Cell Proliferation Kit ThermoFisher Cat#C34557

OVA323–339 peptide InvivoGen Cat#vac-isq

Fixation/Permeabilization Solution Kit

(Cytofix/Cytoperm)

BD Biosciences Cat#554714

Transcription Factor Buffer Set BD Biosciences Cat#562574

123count eBeads ThermoFisher Cat#01-1234-42

Custom ProcartaPlex Multiplex Panel ThermoFisher Cat#PPX-18

AMPure XP beads Beckman Coulter Cat#A63881

Nextera XT DNA Library Prep kit Illumina Cat#FC-131-1024

Dynabeads Mouse DC Enrichment Kit ThermoFisher Cat#11429D

Dynabeads Human DC Enrichment Kit ThermoFisher Cat#11308D

CD4 T cell Isolation Kit, Mouse Miltenyi Biotec Cat#130-104-454

R848 Invivogen Cat#tlrl-r848-5

S. enterica Lipopolysaccharide Sigma-Aldrich Cat#L6511

CpG (ODN 1826) Invivogen Cat#tlrl-1826-5

Recombinant murrine IFN-g PeproTech Cat#315-05

Recombinant murine TNF-a R&D Systems Cat#410-MT-010

Recombinant murine IL-1b PeproTech Cat#211-11B

Recombinant murine IL-4 PeproTech Cat#214-14

Recombinant murine IL-6 PeproTech Cat#213-13-B

Recombinant murine IL-12 R&D Systems Cat#419-ML-010

Collagenase A from Clostridium histolyticum Sigma-Aldrich Cat#11088793001

DNase I grade II, from bovine pancreas Sigma-Aldrich Cat#10104159001

Critical Commercial Assays

Fixation/Permeabilization Solution Kit (Cytofix/

Cytoperm)

BD Biosciences Cat#554714

Transcription Factor Buffer Set BD Biosciences Cat#562574

123count eBeads ThermoFisher Cat#01-1234-42

Custom ProcartaPlex Multiplex Panel ThermoFisher Cat#PPX-18

AMPure XP beads Beckman Coulter Cat#A63881

Dynabeads Mouse DC Enrichment Kit ThermoFisher Cat#11429D

Dynabeads Human DC Enrichment Kit ThermoFisher Cat#11308D

CD4 T cell Isolation Kit, Mouse Miltenyi Biotec Cat#130-104-454

AMPure XP beads Beckman Coulter Cat#A63881

Nextera XT DNA Library Prep kit Illumina Cat#FC-131-1024

NEBNext� High-Fidelity 2X PCR Master Mix New England Biolabs Cat#M0541S

Chromium Single Cell 30 Library & Gel Bead Kit V2 10X Genomics Cat#120237

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

scRNA-seq This paper GEO: GSE137710

RNA-seq and ATAC-seq This paper GEO: GSE130201

Mouse genome assembly UCSC Genome Browser mm10.GRCm38

Gene annotations GENCODE vM17

Transcription factor motif database CIS-BP version 1.02

Immgen reference gene expression Haemosphere version 4.9.5

Gene ontology database MSigDB v7.0

Human mouse gene orthology HGNC HCOP

Human myeloid cells scRNA-seq Villani et al., 2017 https://singlecell.broadinstitute.org/

single_cell

Experimental Models: Organisms/Strains

Mouse: Tbx21RFP-cre Levine et al., 2017 N/A

Mouse: Tbx21RFP-creERT2 Levine et al., 2017 N/A

Mouse: Rorccre (B6.FVB-Tg(Rorc-cre)1Litt/J) The Jackson Laboratory Stock#022791

Mouse: OTII (B6.Cg-Tg(TcraTcrb)425Cbn/J) The Jackson Laboratory Stock#004194

Mouse: Foxp3Thy1.1 Liston et al., 2008 N/A

Mouse: Ccr2–/– Provided by Frederic Geissmann

(Sloan Kettering Institute, New

York, USA)

N/A

Mouse: R26lsl-YFP-Ai3 (B6.Cg-Gt(ROSA)

26Sortm3(CAG-EYFP)Hze/J)

The Jackson Laboratory Stock#007903

Mouse: C57BL/6J The Jackson Laboratory Stock#000664

Mouse: B6 CD45.1 (B6.SJL-Ptprca

Pepcb/BoyJ)Mouse: C57BL/6J CD45.1

The Jackson Laboratory Stock#002014

Mouse: Ccr2GFP Provided by Eric Pamer

(Sloan Kettering Institute,

New York, USA)

N/A

Software and Algorithms

FlowJo software FlowJo, LLC https://www.flowjo.com/

GraphPad Prism Prism version 7 https://www.graphpad.com/scientific-

software/prism; RRID: SCR_002798

HISAT2 v2.1.0 Johns Hopkins University https://ccb.jhu.edu/software/hisat2/

R v3.4.0 (2017-04-21) The Comprehensive R Archive

Network

https://cran.r-project.org/

SAMtools v1.9 SourceForge http://samtools.sourceforge.net/

Rsubread v1.28.1, v1.22.1 Bioconductor https://bioconductor.org/packages/

release/bioc/html/Rsubread.html

DESeq2 v1.22.1, v1.18.1 Bioconductor https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

glmnet v2.0-16 The Comprehensive R Archive

Network

https://cran.r-project.org/web/packages/

glmnet/index.html

Bowtie2 v2.2.5 SourceForge http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

MACS2 v2.1.1.20160309 GitHub https://github.com/taoliu/MACS

IDR v2.0.3 GitHub https://github.com/nboley/idr

HOMER UCSD http://homer.ucsd.edu/homer/motif/

FIMO version 4.11.2 MEME suite http://meme-suite.org/doc/download.html

SEQC GitHub https://github.com/ambrosejcarr/seqc

PhenoGraph GitHub https://github.com/jacoblevine/PhenoGraph

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DoubletDetection GitHub https://github.com/JonathanShor/

DoubletDetection

MAGIC GitHub https://github.com/dpeerlab/magic

f-scLVM GitHub https://github.com/bioFAM/slalom
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents may be directed to, and will be fulfilled by, the Lead Contact: Alexander Rudensky

(rudenska@mskcc.org). This study did not generate new unique reagents.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Mice
Tbx21RFP-cre and Tbx21RFP-creERT2, R26lsl-YFP-Ai3, Rorccre, OTII, Foxp3Thy1.1 mice have been previously described (Barnden et al.,

1998; Eberl et al., 2004; Levine et al., 2017; Liston et al., 2008; Madisen et al., 2010). Ccr2GFP mice were provided by E. Pamer.

Ccr2–/– mice were provided by F. Geissmann. C57BL/6 (CD45.1+) and C57BL/6 (CD45.2+) mice were purchased from Jackson Lab-

oratories. Tbx21RFP-creERT2R26lsl-YFP are homozygous for the Tbx21 knock-in and heterozygous at the R26lsl-YFP locus. Tbx21RFP-cre

mice are homozygous for the Tbx21 knock-in. OTII-Foxp3Thy1.1 and RorccreR26lsl-YFP mice are heterozygous at each locus. Gener-

ation and treatments of mice were performed under protocol 08-10-023 approved by the Sloan Kettering Institute (SKI) Institutional

Animal Care and Use Committee. All mouse strains were maintained in the SKI animal facility in specific pathogen free (SPF) condi-

tions in accordance with institutional guidelines and ethical regulations. For tamoxifen administration, 40mg tamoxifen dissolved in

100 mL ethanol and subsequently in 900 mL olive oil (Sigma-Aldrich) were sonicated 4 3 30 s in a Bioruptor Twin (Diagenode). Mice

were orally gavaged with 200 mL tamoxifen emulsion per treatment. For antibiotic treatment, mice were weaned onto filtered anti-

biotic-treated water containing ampicillin, kanamycin, vancomycin (0.1% w/v each) and metronidazole (0.05% w/v).

Both male and female mice were included in the study and we did not observe sex-dependent effects. All mice analyzed were sex

and age matched (6–10 weeks old). All animals used in this study had no previous history of experimentation and were naive at the

time of analysis.

Human specimens
Human tissue samples (Table S6) were obtained in accordance with national guidelines. All patients signed informed consent and the

study was approved by the institutional review board (IRB) at Memorial Sloan Kettering Cancer Center. Tumor tissue was collected

from surgical specimens after macroscopical examination of the tissue by a pathologist. For each specimen, a fragment was

formalin-fixed and paraffin embedded (FFPE) for histology. The remainder of the tissue was directly processed to obtain single

cell suspensions.

Spleen tissueswere obtained frompatients undergoing resection of tumors in other organs. Patients were not subjected to chemo-

therapy or immunotherapy prior to surgery and the spleens were macroscopically normal.

Human PBMCs were isolated from Buffy coats from healthy donors and cryopreserved.

METHOD DETAILS

Cell isolation
Mice were euthanized by CO2 inhalation. For analysis of DCs from lung or liver, mice were immediately perfused with 20 mL ice-cold

PBS. Organs were harvested and processed as follows. Lymphoid organs, lung and liver were digested in collagenase in RPMI1640

supplemented with 5% fetal calf serum, 1%L-glutamine, 1%penicillin–streptomycin, 10mMHEPES, 1mg/ml collagenase A (Sigma,

11088793001) and 1U/mL DNase I (Sigma, 10104159001) for 45 min at 37�C, 250 rpm. Small and large intestine were removed,

flushedwith PBS and after Peyer’s patches were removed 0.5-cm-long fragments of intestines were further washed in PBS and incu-

bated in PBS supplemented with 5% fetal calf serum, 1% L-glutamine, 1% penicillin–streptomycin, 10mMHEPES, 1mMdithiothrei-

tol, and 1 mM EDTA for 15 min to remove the epithelial layer. Samples were washed and incubated in digest solution for 30 min. 1/4

inch ceramic beads (MP Biomedicals, 116540034) were added to large intestine samples (3 per sample) to aid in tissue dissociation.

Digested samples were filtered through 100-mm strainers and centrifuged to remove collagenase solution. Cells from lung, liver and

intestinal lamina propria were resuspended in 40% Percoll and centrifuged to remove debris. For BM isolation, the femur and tibia,

after the tips of the bones were removed, were placed in a punctured PCR tube positioned within a 1.5ml Eppendorf tube. Samples

were pulse spun to pellet BM cells at the bottom of the Eppendorf tube, washed in PBS-2% FBS, filtered through a 100-mm strainer
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and kept on ice until ready for further use. For in vitro co-culture experiments, splenic CD4+ T cells were enriched using the Miltenyi

CD4 Negative Selection Isolation Kit (Miltenyi). Single cell suspensions of human PBMCs or splenocytes were thawed prior to flow

cytometric analysis.

Preparation of human tissue cell suspensions
Spleen tissue was dissociated by manual mincing followed by an incubation of 45 min at 37�C, 250 rpm, in RPMI1640 supplemented

with 5% fetal calf serum, 1%L-glutamine, 1%penicillin–streptomycin, 10mMHEPES, 1mg/ml collagenase A (Sigma, 11088793001)

and 1U/mL DNase I (Sigma, 10104159001). Cells were then washed and filtered with a 100 mm filter. Cells were either immediately

processed for DC enrichment and cell-sorting (scRNA-seq) or cryopreserved in Bambanker media and cryopreserved.

Fresh tumor tissue was dissociated by manual mincing followed by an incubation of 30 min at 37�C in RPMI with liberase (0.83mg/

ml; Sigma-Aldrich), alternated with 3 rounds of dissociation with a gentleMACSTM dissociator (Miltenyi). After dissociation, cell sus-

pensions were filtered with a 100 mm filter, and resuspended in ACK lysis buffer before washing with RPMI-5% FBS. Cells were then

washed with PBS and stained with LIVE/DEAD Fixable Ghost Dye Red 780 followed by anti-CD45. Viable immune cells were sorted

on a FACS Aria II sorter (BD Biosciences).

Flow cytometry analysis
To assess cytokine production after ex vivo restimulation, single cell suspensions were incubated for 3 hours at 37�Cwith 5%CO2 in

the presence of 50ng/mL PMA and 500 ng/mL ionomycin with 1 mg/mL brefeldin A and 2 mMmonensin. For flow cytometric analysis,

dead cells were excluded either by staining with SYTOX blue (Invitrogen) after cell-surface staining (live cells) or cells were washed

with cold PBS and then stained with LIVE/DEAD Fixable Violet or Ghost Dye Red 780 in PBS for 10 minutes at 4�C, prior to cell-sur-

face staining. Cells were then incubatedwith anti-CD16/32 in staining buffer (2%FBS, 0.1%Na azide, in PBS) for 10minutes at 4�C to

block binding to Fc receptors. Extracellular antigens were stained for 20-30 minutes at 4�C in staining buffer. Cells were fixed and

permeabilized with BDCytofix/Cytoperm (for cytokine analysis) or BD Transcription Factor Fix/Perm (for transcription factor analysis)

per manufacturer instructions. Intracellular antigens were stained for 30min at 4�C in the appropriate 1x Perm/Wash buffer. Cells

were washed with staining buffer before acquisition on a BD LSR II flow cytometer (Becton Dickinson) or Cytek Aurora . 123count

eBeads were added to quantify absolute cell numbers.

Bone Marrow Progenitor Analysis
For sorting, BM cell suspensions were depleted of Lin+ cells with a cocktail of biotin-conjugated antibodies [anti-CD3, B220 and

NK1.1 for MDP and CDPs or anti-CD3, B220, NK1.1, Gr-1 and CD11b for pre-DCs; Biotin Lineage Mouse Panel (BD Biosciences)]

and anti-biotin microbeads (Miltenyi) followed by separation on an LS column (Miltenyi). After staining for analysis or cell sorting,

MDPs were identified as Lin(B220, CD3, NK1.1, Ter-119, Gr1, CD11b)–Sca1–MHCII–CD11c–CD135+CD115+CD117hi; CDPs were

identified as Lin(B220, CD3, NK1.1, Ter-119, Gr1, CD11b)–Sca1–MHCII–CD11c–CD135+CD115+CD117int/lo; pre-DCs were gated

as Lin(B220, CD3, NK1.1, Ter-119)–Sca1–CD11c+MHCII–CD135+CD172a–. 1-23 104 FACS-isolated DC precursors were transferred

via intravenous retro-orbital injection into three-week old CD45.1 recipients. Spleens were harvested 7 days after transfer and the

phenotype of the CD45.2+ progeny of the transferred cell populations was analyzed by flow cytometry.

Adoptive transfer of splenic Siglec H+ pre-DCs
Tbx21RFP-creCD45.2+Ly6C�CD64–MHCII+CD11c+Siglec-H+ cells were transferred via intravenous retro-orbital injection into six-

week old sublethally irradiated (650 rad) CD45.1 recipients. At 7 d after cell transfer, spleens were collected and single-cell suspen-

sions were analyzed by flow cytometry to establish the phenotype of the CD45.2+ progeny.

In vivo LPS immunization
Mice were immunized with 2 mg of LPS, intra-peritoneally. After 16 hr, spleens were harvested and single-cell suspensions analyzed

by flow cytometry.

In vitro DC stimulation
5 3 104 sort-purified DCs were cultured in 96-well plates in the presence of R848 (Invivogen 2.5 mg/ml), LPS (100ng/ml; Sigma-Al-

drich), CpG (1 mm; ODN 1826 Invivogen), IFN-g (20ng/ml; Peprotech) or TNF-a (20ng/ml; R&D Systems) for 16 hours.

DC Cytokine production
5 3 104 sort-purified DCs were cultured in 96-well plates in the presence of CpG (5 mm; ODN 1826 Invivogen), or R848 (2.5 mg/ml;

Invivogen) for 18 hours, triplicate wells per condition. Cell-free supernatants were then harvested and stored at �80�C. These were

thawed immediately prior to analysis using a custommultiplexed ProcartaPlex assay, carried out according to manufacturer instruc-

tions with technical duplicates and read on a Luminex 200 (Luminex Corp) instrument. Standard curves were generated and values

interpolated using Graphpad Prism.
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Cytospin analysis
Cytospins of 33 104 – 53 104 sort-purified cells were stainedwithMay–Gruenwald solution (VWR), washed and stainedwith Giemsa

(Fisher Scientific) for 20min. Slides were air-dried and sealed with mounting medium, and images were taken with a 40X Mirax

scanner.

In vitro cell culture
Naive TCRb+CD4+vb5+Thy1.1(Foxp3)–CD44loCD62Lhi OTII T cells were sort purified after enrichment with a CD4+ T cell negative se-

lection kit (Miltenyi Biotec). DC subsets were sort purified after enrichment with Dynabeads Mouse DC Enrichment Kit (Invitrogen).

DCs and T cells were co-cultured in triplicate at a ratio of 2 3 104 DCs to 1 3 105 T cells in the presence of OVA323–339 (1 mg/ml; In-

vivogen), under Th0 conditions (anti-IL-4 (11B11) and anti-IFN-g (XMG1.2)) or with the addition of polarizing cytokines (Th1: 10 ng/ml

IL-12 (R&D systems) and anti-IL-4; Th2: 10 ng/ml IL-4 (Peprotech), anti-IL-12 (C17.8), and anti-IFN-g; Th17: 2ng/ml TGF-b1 (R&D

systems), 20 ng/ml IL-6 (Peprotech), 10 ng/ml IL-1b, anti-IL-4, and anti-IFN-g; iTreg: 2ng/ml TGF-b1, 500IU/ml of IL-2 (Peprotech).

IL-2 (50IU/ml) was added to Th0, Th1, and iTreg conditions on d3. All blocking antibodies were at 10 mg/ml. Cytokine production or

Foxp3 expression was assessed after 4 days of culture.

In vitro T cell proliferation assays
13 105 labeled sort-purified naive TCRb+CD4+Thy1.1(Foxp3)–CD44loCD62Lhi OTII T cells were co-cultured with 23 104 sort-purified

DCs in the presence of OVA323–339 (1 mg/ml), or left unstimulated. OT-II T cells were labeled with CellTrace Violet (Thermo Fisher Sci-

entific) according to the manufacturer’s instructions. Dilution of the cell dye was assessed by flow cytometry on day 5 of culture.

Single-cell RNA sequencing
Mouse DC subsets were enriched from a pool of two spleens with Dynabeads Mouse DC Enrichment Kit (ThermoFisher). Lin(CD3,

CD19, CD90)–CD64–Ly6C–CD11c+MHCII+ cells were then purified using an Aria II cell sorter (BD Bioscience) into two populations

(RFP+ and RFP– cells). Cells were sorted into cRPMI, before being pelleted and resuspended in RPMI-2% FBS. Human DCs from

spleen were enriched with Dynabeads Human DC Enrichment kit (ThermoFisher). Lin(CD3, CD19, CD56)–CD14–CD11c+MHCII+ cells

were then FACS-isolated into RPMI-2% FBS for single cell RNA-seq. Human CD45+ cells from human melanoma samples were

FACS-isolated into RPMI-2% FBS for single cell RNA-seq. The scRNA-seq libraries were prepared following the user guide manual

(CG00052 Rev E) provided by the 10XGenomics andChromium Single Cell 30 Reagent Kit (v2). Briefly, samples were encapsulated in

microfluidic droplets at a dilution of �70 cells/ml (doublet rate �3.9%.). Encapsulated cells were subjected to reverse transcription

(RT) reaction at 53�C for 60min. After RT step, the emulsion droplets were broken and barcoded-cDNAwas purifiedwith DynaBeads,

followed by 14-cycles of PCR-amplification (98�C for 180 s; [98�C for 15 s, 67�C for 20 s, 72�C for 60 s] x 12-cycles; 72�C for 60 s).

50 ng of PCR-amplified barcoded-cDNA was fragmented with the reagents provided in the kit and purified with SPRI beads to obtain

an average fragment size of 600 bp. Next, the DNA library was ligated to the sequencing adaptor followed by indexing PCR (98�C for

45 s; [98�C for 20 s, 54�C for 30 s, 72�C for 20 s] x 10 cycles; 72�C for 60 s). The resulting DNA library was double-size purified (0.6-

0.8X) with SPRI beads and sequenced on an Illumina NovaSeq platform (R1 – 26 cycles, i7 – 8 cycles, R2 – 96 cycles) resulting in

184.5-186.1 million reads per sample (average reads per single-cell being 42,000 and average reads per transcript 4.40-7.14).

Bulk RNA-sequencing
Bulk transcriptomes were generated from cells pooled from twomice with two (MLN) or three (spleen) biological replicates. Lin(CD3,

CD19, CD90)–CD64–Ly6C–CD11c+MHCII+ cells were sorted into the following three populations: CD11b+XCR1�RFP� (T-bet+ cDC2),

CD11b+XCR1�RFP+ (T-bet– cDC2) and CD11b�XCR1+ (cDC1), and resuspended in Trizol. RNA was extracted and after 12 cycles of

amplification using the SMART-Seq v4 Ultra Low Input RNA Kit (Clonetech catalog # 63488) libraries were prepared using the KAPA

Hyper Prep Kit (Kapa Biosystems KK8504) by the Integrated Genomics Core (MSKCC). Samples were barcoded and run on a HiSeq

4000 or HiSeq 2500 in rapid mode in a 50bp/50bp paired end run, using the HiSeq 3000/4000 SBS Kit or HiSeq Rapid SBS Kit v2

(Illumina). An average of 30 million paired reads were generated per sample and the percent of mRNA bases per sample ranged

from 70 - 80%.

ATAC-sequencing
53 104 sort-purified DCs were collected and ATAC-seq libraries were prepared as previously reported (Buenrostro et al., 2015) with

the following modifications. Cells were washed with 50 mL of PBS and cell pellets were resuspended in 50 mL of cold lysis buffer fol-

lowed by centrifugation. Cell pellets were resuspended in 50 mL of Tn5 transposasemixture: 1x Tagment DNABuffer, 2.5 mL Tagment

DNA Enzyme (Nextera DNA Library Preparation Kit, Illumina). Cells were incubated at 42�C for 45 minutes with agitation followed by

DNA isolation using the MinElute Reaction Cleanup Kit (QIAGEN, Hilden, Germany). Construction of ATAC-seq libraries included an

initial round of PCR in a total volume of 50uL using the NEBNext High-Fidelity 2X PCR Master Mix (New England Biolabs, MA, USA)

with primers (1.25 mM each) from Buenrostro et al. (2015) with the following thermal cycles: 5 minutes at 72�C, 30 s at 98�C, followed

by 5 cycles [98�C for 10 s, 63�C for 30 s and 72�C for 60 s]. To avoid over amplification of libraries which result in GC bias, 5uL of the

PCR-amplified DNA were subjected to qPCR (BioRad Real-Time PCR System) in a volume of 15uL using SYBR Green dye (final 0.6x

SYBR Green I, Life Technologies) and with the respective primers (1.25 mM each). Following qPCR [30 s at 98�C, followed by 30
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cycles (98�C for 10 s, 63�C for 30 s and 72�C for 60 s)], amplification curves were analyzed and the optimal number of PCR cycles for

each sample were estimated with cycle thresholds reaching 1/3 of the maximum. Upon selecting the cycle threshold, the remaining

45uL of the initial PCR mix was subjected to a second round of PCR with the following thermal cycles: 30 s at 98�C, followed by n

cycles [98�C for 10 s, 63�C for 30 s and 72�C for 60 s]. The libraries were purified by Agencourt AMPure XP beads (x1.8 vol.). Samples

were quantified and prepared for sequencing by the Integrated Genomics Core at Memorial Sloan Kettering Cancer Center. After

PicoGreen quantification and quality control by Agilent BioAnalyzer, libraries were pooled equimolar and run on a HiSeq 4000 in a

50bp/50bp paired end run, using the HiSeq 3000/4000 SBS Kit (Illumina). The average number of read pairs per sample was 122

million

QUANTIFICATION AND STATISTICAL ANALYSIS

Mouse scRNA-seq Data Analysis
Data from scRNA-seq of RFP– and RFP+ samples were individually processed using the SEQC pipeline (Azizi et al., 2018) using the

package provided mm38 mouse genome reference and default parameters for the 10X platform. The SEQC pipeline performs read

alignment, multi-mapping read resolution, as well as cell barcode and UMI correction to generate a (cells x genes) count matrix. The

pipeline further performs the following initial cell filtering steps: true cells are distinguished from empty droplets based on the cumu-

lative distribution of total molecule counts; cells with a high fraction of mitochondrial molecules are filtered (> 20%); and cells with low

library complexity are filtered (cells that express very few unique genes). The resulting count matrix from SEQC contained 5931 cells

by 15084 genes, after 4.13% RFP+ cells and 1.44% RFP– cells were filtered for high mitochondrial content and 0.39% RFP+ cells

and 1.8% RFP– cells were filtered for low library complexity. These default filters were designed to be permissive and cells that ex-

press < 1000 unique genes were further filtered to remove any remaining low quality cell libraries (determined by inspection of the

bimodal log10 genes expressed count distribution). Genes that were expressed in more than 10 cells were retained for further anal-

ysis. The resulting filtered count matrix (4464 cells by 11755 genes) contained 2032 RFP+ cells with a median of 6146 molecules/cell

and 2432 RFP– cells with a median of 10263 molecules/cell.

This filtered count matrix was normalized for library size. This normalized matrix was then multiplied by the median of the total

molecule count across all cells for numerical stability and log2 transformed with a pseudocount of 0.1 for downstream analysis. Prin-

cipal Component Analysis (PCA) was applied to the data, selecting the 20 top PCs based on the decay in explained variance per

additional PC. While the point of maximum curvature suggested a threshold of 8 PCs, we conservatively included 20 PCs (explaining

13% of the total variance) and retained the reduced matrix for further downstream analysis.

For clustering analysis, to ensure capture of smaller discrete populations and a fine clustering across our dataset we applied

Phenograph to the PCA reduced expression matrix with k = 40. To evaluate the clustering robustness to input parameters of the

discrete subpopulations, we separately evaluated robustness in two partitions of the data: a partition containing cells in the discrete

subpopulations (clusters 3, 10, 11, 12, 14, 16) and a partition containing cells in the more continuous cDC1 and T-bet+ cDC2 pop-

ulations (Figure S7A). For the discrete subpopulations, as we swept input parameters, in each clustering solution we consolidated

clusters with majority membership in either cDC1 or T-bet+ cDC2 populations, and then calculated the adjusted Rand Index (RI) be-

tween pairs of these solutions (Figure S7A). For the input number of PCs ranging from 10 to 60 and k ranging from 10 to 60, the par-

titioning between these discrete subpopulations was robust (RIPC = 0.95 ± 0.029, RIk = 0.95 ± 0.022). For the complementary parti-

tion, where we consolidated clusters with majority membership in the discrete subpopulations, the clustering solutions were less

robust (RIPC = 0.75 ± 0.13, RIk = 0.73 ± 0.087; Figure S7A), indicating that heterogeneity among cDC1s and T-bet+ cDC2s was

not coherently described by clustering. At higher numbers of PCs and higher k adjacent T-bet+ and Tbet– cDC2 clusters tended

to collapse, likely reflecting a considerable degree of continuity between these phenotypes as we describe using Palantir and diffu-

sion maps (below).

For Phenograph cluster annotation, we used bulk gene expression profiles of sorted myeloid cells reported by the Immgen Con-

sortium (Miller et al., 2012). Given that our sorting strategy is selective for CD11c+ splenic DCs, we restricted our comparison to

splenic DCs and related populations in the Immgen database (Figure S1E). Bulk samples were library-size normalized and z-scored.

We computed the mean gene expression for each of the Phenograph clusters and standardized expression values (z-score). Cluster

centroids were then correlated with bulk profiles. Pearson correlation coefficients are shown for each pairwise comparison between

datasets (Figure S1C).We found that clusters 1, 4, 5, 7, 9, and 13 are all maximally correlated with ImmGenCD8+ splenic DCs and are

accordingly labeled cDC1, supported by high expression of Xcr1, Clec9a, and Irf8. Similarly, T-bet+ clusters (0, 2, 6, 8, and 15) and

cluster 14 (a mix of T-bet+ and T-bet– DCs) are maximally correlated with ImmGen CD4+ splenic DCs and are labeled cDC2,

supported by high expression of Sirpa, Cd4, and Irf4. Cluster 12 correlated highly with Immgen skin-draining lymph node DCs

corroborating their annotation as a migratory DC subset. Cluster 16 showed a high correlation with ImmGen monocyte profiles.

Further examination of post-sort purity and expression of marker genes indicated that this is contaminating population of

CD11c–MHCII–Ly6C+ monocytes. While clusters 3 and 10 correlated most highly with ImmGen macrophage and monocyte profiles,

their expression of Itgam (CD11b), Sirpa and Zbtb46 corroborates their cDC2 annotation. Doublet detection (http://gitub.com/

JonathanShor/DoubletDetection) indicated that the cDC1 cluster 9 may consist of cDC1/cDC2 doublets. We retained this cluster

in our characterization as we cannot rule out the possibility they may be phagocytic cells. To characterize proliferative phenotypes

across the clusters, for each cell we calculated the average expression of established gene expression signatures for G1/S andG2/M
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cell-cycle phases (Tirosh et al., 2016). The distribution of the single-cell expression of these signatures were markedly increased in

T-bet+ clusters 6 and 8 as well as in cDC1 cluster 4 (Figure 1H).

To account for somemissing values in scRNA-seq, we employed MAGIC, a method of ‘‘de-noising’’ and imputing missing expres-

sion values through data diffusion between cells with similar covariate gene relationships (van Dijk et al., 2018). We constructed the

adaptive affinity matrix using k = 30, ka = 10, and t = 4 as input parameters, where t specifies the number of times the affinity matrix is

powered for diffusion. As previously demonstrated (vanDijk et al., 2018),MAGIC imputed values are robust to specific choice of these

input parameters. We found for k ranging from 20 to 60 and for t ranging from 3 to 12, themedian R2 across all genes was at least 0.90

between imputed expression solutions (Figure S7B). Following MAGIC, gene expression values were no longer sparse and followed

better structured distributions that align to the data manifold. These distributions can then be directly used to assess expression dif-

ferences between cell subsets (van Dijk et al., 2018), thus taking advantage of the entire distribution of values in the comparison.

To quantify the difference between distributions, we use the earth mover’s distance (EMD, also known as the Wasserstein dis-

tance). EMD, which quantifies the amount of work required to transport one distribution to another and in one dimension, was calcu-

lated as the L1 norm of the cumulative distribution functions under comparison, EMD = jjCDF1 - CDF2jj1. We assigned a positive or

negative EMD score according to directionality of the change in themedians of the two distributions. To identify distinguishingmarker

genes for a given cluster, we computed the EMD score for each gene, comparing the imputed expression within the cluster to the

imputed expression in all cells outside the cluster (one-versus-rest). We additionally directly compared the expression distributions

of T-bet+ cDC2 to T-bet– cDC2. Given that cell numbers were similar to an order of magnitude in our clusters, rescaling EMD mea-

sures to account for differences in cell numbers between clusters had little effect on our results.

To further identify discriminative markers for each cluster, we also evaluated the classification performance of individual genes in

one-versus-rest comparisons. Specifically, for a given cluster, we evaluated how well the imputed expression of a gene can discrim-

inate between cells within the cluster from all cells outside the cluster using the area under the ROC curve (AUC) score. The AUC

score summarizes the performance of a gene threshold based classifier. Geneswith an AUC score near 1 are strong positive discrim-

inators (expression positively associated with the cluster), while genes with an AUC score near 0 are strong negative discriminators

(expression negatively associated with the cluster). We used imputed expression for the calculation of AUC scores to retain the

discriminative potential of genes with sparse expression. We reasoned that a combination of EMD and AUC score indicate strong

discriminative markers for identified clusters. A large EMD score for a gene indicates large expression differences between clusters,

while an AUC score near 0 or 1 indicates gene expression that strictly discriminates the clusters.

For cell cycle-related gene expression correction, we applied f-scLVM (Buettner et al., 2017) to factor out their effects from our

expression values. f-scLVM relies on provided input ontologies to seed a latent factor model for the observed expression matrix.

We used the following gene ontologies retrieved from MSigDB (Subramanian et al., 2005) to annotate the cell cycle effect:

GO:0000279 M phase, GO:0006260 DNA replication, GO:0007059 chromosome segregation, GO:0000087 M phase of mitotic

cell cycle, GO:0048285 organelle fission. To provide starting points for f-scLVM to model other relevant latent factors in our

dataset along with cell-cycle effects, we additionally provided a set of ontologies derived from principal components. For each of

our first 20 principal components, we created a gene set to input as a factor to f-scLVM by concatenating the top 30 positive and

negative gene loadings (60 total) associated with that PC. We found this was necessary to prevent f-scLVM from adjusting cell-cycle

factors to capture other signals in the data. We fitted the f-scLVM model on the normalized and log expression values for cDC2

clusters with otherwise default input parameters. In the resulting model, we considered each input factor with primarily cell-cycle

annotated genes among its top terms as a cell-cycle effect. We then regressed these cell-cycle effects from the expression of

each gene individually in the cDC2 expression matrix throughmultiple linear regression using default functions provided by f-scLVM.

Diffusion maps and Palantir analyses
We considered T-bet+ cDC2 clusters, T-bet– cDC2 clusters, and the Siglec-H+ DC cluster for trajectory analysis focused on the tran-

sition from T-bet– cDC2 to T-bet+ cDC2. We generated diffusion maps following the strategy outlined in Setty et al. (2018). From the

selected clusters, we used cell-cycle corrected expression values to construct an adaptive affinity matrix as described for MAGIC

imputation above. Eigenvectors of this affinity matrix are termed diffusion components. Based on the eigen gap, we chose to use

7 diffusion components for downstream use in Palantir and for calculating diffusion distances. We scale each included diffusion

component by the factor l/(1-l) where l is the associated eigenvalue, to reflect ‘multi-scale’ diffusion distances.

We used Palantir to characterize potential pseudo-time trajectories emanating from cells belonging to the Siglec-H+ cluster. Given

a starting input cell, Palantir models cell fate as a continuous probabilistic process and calculates each cell’s position in pseudotime

along with the probability that each cell reaches each terminal state, termed the branch probability. Palantir also reports the differ-

entiation potential of each cell, measured by the entropy of branch probabilities associated with the cell. Cells in the Siglec-H+ cluster

were distinguished by Diffusion Component 3. We chose the cell with the most extreme value as the input start cell. We ran Palantir

using the 7 diffusion components described above, k = 20 and 2000 waypoints to sufficiently cover all clusters for pseudotime

calculation. All 5 terminal points shown in Figure S5B were automatically identified by Palantir and are corroborated by diffusion

component extrema. Reported gene expression trends in pseudotime were calculated using default methods provided by Palantir,

which fits a generalized additive model weighted by branch probabilities to MAGIC imputed expression values.

To further illustrate the relationships between Siglec-H+ DC, T-bet+ and T-bet– cDC2 clusters, we projected cells from each set of

clusters onto their corresponding top two diffusion components (Figure S4D). These projections demonstrate that phenotypic
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extrema from these clusters are spanned by a continuumof states. The projection of Siglec-H+ DC and T-bet+ cluster cells on primary

diffusion components (Figure S4D, left panel) additionally illustrates connectivity between Siglec-H+ DC cells with proliferative cells

from the T-bet+ clusters 6 and 8, further supporting the potential progenitor capabilities of the Siglec-H+ DC. Additionally, we calcu-

lated shortest paths from the Siglec-H+ DC starting cell to all terminal cell states used in Palantir above based on k-NN graphs of

diffusion distances (k = 15). Shortest path step sizes from the Siglec-H+ DC to all terminal states do not contain apparent outliers,

indicating continuity between the states (Figure S5F, bottom panel). We evaluated cells in proximity to shortest paths by randomly

sampling shortest paths from k-l-NN graps, where l edges are randomly subsampled for each cell in the k-NN graph (k = 15, l = 5). We

calculated the probability that each cell is within 20 nearest neighbors of the sampled paths (Figure S4F, top panel), as well as the

proportion of cells along the path belonging to the Siglec-H+ DC, T-bet+ cDC2 or T-bet– cDC2 subset (Figure S5F, middle panel).

Shortest paths from the Siglec-H+ DC toward T-bet+ states do not pass through T-bet- clusters and vice versa (Figure S4F, middle

panel), indicating that both cDC2 subsets may arise directly from a common Siglec-H+ DC progenitor in the spleen.

Human scRNA-seq
Human splenic DCs were processed using the 10X Genomics Chromium System (Chromium Single Cell 30 Reagent Kits User Guide

v2 Chemistry). FASTQ files were processed using the Sequence Quality Control (SEQC) pipeline (Azizi et al., 2018), as described

above, and reads were aligned to the human genome hg38. A total of 0.72% and 0.02% of cells were filtered out due to high mito-

chondrial RNA fraction and low molecule complexity respectively, resulting in 5110 cells/sample and a median of 9656 molecules/

cell. Raw count libraries were additionally filtered to retain cells with greater than 6000 total molecules to remove low quality libraries

(determined by bimodal library size count distribution), removing an additional 7.6% of cells. Genes detected in greater than 10 cells

were retained for further analysis. The filtered count data (4721 cells by 12476 genes) was normalized for library size and log2 trans-

formed. Phenograph was used to cluster PCA reduced expression data, using k = 30 and 20PCs, explaining 6.8% of the data vari-

ance. Application of Doubledetection (v2.4 https://zenodo.org/record/2678042) identified two clusters that contained a majority of

putative cDC1 and cDC2 doublets that were subsequently removed. A small cluster (31 cells) of putative ILC3 contaminants were

also removed, resulting in a remaining total of 4465 cDC cells. Differential expression analysis was performed using EMD, as defined

above, calculated on normalized, log transformed andMAGIC imputed data (van Dijk et al., 2018). Diffusionmapswere calculated for

the cDC2 subset as described above.

Single cell transcriptomes from tumor associated human cDC2s were analyzed from FACS-isolated CD45+ cells from human mel-

anoma samples (n = 2), either fresh or after short term storage at �80C in Bambanker (Lymphotec, Inc.). Samples were processed

using the 10X Genomics Chromium System (Chromium Single Cell 30 Reagent Kits User Guide v2 Chemistry). FASTQ files were pro-

cessed using the Sequence Quality Control (SEQC) pipeline (Azizi et al., 2018), as described above, and reads were aligned to the

human genome hg38. A median of 12.14% and 2.9% of cells were filtered out due to high mitochondrial RNA fraction and low mole-

cule complexity respectively, resulting in a median of 3856 cells/sample and 2827 molecules/cell. Raw count libraries were addition-

ally filtered to retain cells with greater than 1000 total molecules to remove low quality libraries (determined by bimodal library size

count distribution), removing an additional 11.4% of cells. Genes detected in greater than 10 cells were retained for further analysis.

The filtered count data (9315 cells by 15040 genes) was normalized for library size and log2 transformed. Phenograph was used to

cluster PCA reduced expression data, using k = 30 and 20PCs, explaining 14.8% and 18.5% of data variance in complete cohort and

inmyeloid subsets, respectively. For cluster annotation, Pearson correlation coefficient was calculated as described above to assess

similarity of Phenograph clusters centroids and bulk RNA-seq subsets (Jeffrey et al., 2006; Novershtern et al., 2011). Residual mel-

anoma cells after CD45+ sorting were identified by tyrosinase (TYR) positivity. Differential expression analysis was performed using

EMD, as defined above, calculated on normalized, log transformed and MAGIC imputed data (van Dijk et al., 2018). MAGIC imputed

expression of canonical myeloid genes and analysis of differentially expressed genes were used to determine cell identity of myeloid

cells (n = 2122 cells).

Analysis of human blood myeloid single cell transcriptomes
We utilized publicly available single-cell transcriptomic data from FACS-isolated human peripheral blood DCs and monocytes,

generated with a Smart-Seq2 based protocol (Villani et al., 2017). Normalized and log transformed data were downloaded from

the Broad Single-cell portal along with corresponding cluster annotations.

Correspondence between mouse and human DC scRNA-seq subsets
To characterize whole transcriptome correspondence between mouse and human cDC2 subsets, we computed cluster centroids in

bothmouse and human datasets for orthologous genes identified using the HGNCdatabase (Seal et al., 2011).We then standardized

(z-score) expression values for each gene across the cluster average profile within each dataset before calculating the Pearson cor-

relation coefficient for each pairwise mouse-human cluster comparison.

To analyze the correspondence of transcription regulator expression betweenmouse and human cDC2 subsets, we independently

clustered transcriptional regulator expression patterns and examined their overlap across species. We collected a comprehensive

transcription factor annotation from AnimalTFDB 3.0 (Hu et al., 2019), retaining 662 orthologous TFs that passed our predefined gene

expression threshold in both species. We selected top varying transcriptional regulators by one-way ANOVA on library-size normal-

ized log-transformed expression across cDC2 clusters. After Benjamini-Hochberg p value correction, 103 transcription factors
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passed an FDR threshold of 1e-5 in both species. The MAGIC imputed expression profiles of these transcription factors were

z-scored and clustered in each species separately using Phenograph with k = 10 and the cosine distancemetric. Transcription factor

gene clusters were associated with cDC2 subsets in each species by their maximal collective expression across cDC2s.

Bulk RNA sequencing analysis
Mouse genome assembly mm10.GRCm38 was used for bulk RNA-seq read alignments. Gene annotations from GENCODE vM17

were used for all analysis. Analysis was done using custom scripts in R v3.4.0 (2017-04-21). Reads were aligned to the mouse

genome assembly mm10.GRCm38 using HISAT2 v2.1.0 (Kim et al., 2015), with default parameters including splice sites obtained

from gene annotations. Uniquely aligned reads were extracted using grep with parameters ‘‘-v ’NH:i:[2-9]’’’ and SAMtools v1.9 (Li

et al., 2009), with parameters ‘‘view -h -F 4 -q 20 -b’’ and sorted and indexed using SAMtools. For analysis of RNA-seq samples

in cDC1s, T-bet– cDC2s, T-bet+ cDC2s in the spleen and the lymph node, reads aligned to genes from the GENCODE gene anno-

tation were counted using Rsubread v1.28.1 (Liao et al., 2013). Differential gene expression between any pair of samples was as-

sessed using DESeq2 v1.22.1 (Love et al., 2014), using default FDR adjustment of p values for multiple hypothesis testing. 1370

genes were identified as significantly differentially expressed in splenic T-bet– cDC2s and T-bet+, 3624 genes - differentially ex-

pressed in splenic cDC1s and T-bet- cDC2s, 2327 genes – in splenic cDC1s and T-bet– cDC2s, 436 genes - between MLN T-bet–

cDC2s and T-bet+ cDC2s, 1827 genes - between MLN cDC1s and T-bet+ cDC2s, 1936 genes - between MLN cDC1s and T-bet–

cDC2s. To identify the core gene signature for T-bet– cDC2s and T-bet+ cDC2s, we addedmore stringent conditions to the differential

expression analysis between these two subsets in the spleen and in the lymph node, requiring absolute value of log2FoldChange of

expression to be above 1.5 and average normalized read counts to be at least 50. This resulted in the list of 316 genes significantly

overexpressed in T-bet+ cDC2s versus T-bet– cDC2s in the spleen and 142 such genes in the lymph node, with the overlap of 69

genes, and the list of 400 genes significantly overexpressed in T-bet– cDC2s versus T-bet+ cDC2s in the spleen and 219 such genes

in theMLN, with the overlap of 155 genes. The same processing and differential expression analysis was done for bulk RNA-seq data

from YFP+ Rorc(gt) fate-mapped (Rorgt fm) cDC2s and ILC3s from RorcCreRosa26lsl-YFP mice, resulting in 3550 differentially ex-

pressed genes (Figure S4D). Furthermore, these Rorgt fm cDC2s were normalized and visualized together with T-bet+ and T-bet–

cDC2s, limited to the genes differentially expressed between T-bet+ and T-bet– cDC2s, identified at FDR < 0.01, abs(log2Fold-

Change) > 1, average normalized read count > 1, resulting in 658 genes (Figure 4H). Library size scaling factors were estimated using

DESeq2. Heatmap visualizations of various sets of differentially expressed genes (using z-score per row of log2(library-size normal-

ized count + 1) values) were done using pheatmap v1.0.10. Analysis of association of scRNA-seq data with bulk RNA-seq data was

done as follows. Initial raw scRNA-seq read count data over 4420 cells was filtered to contain only genes with total count over all cells

> 300, resulting in a matrix of read counts in 6570 genes across 4420 cells. Then counts in each cell were divided by the total read

count in that cell, andmultiplied by themedian across all cells of the total read count per cell. Counts were then transformed using the

function log2(count + 1). The resulting transformed normalized counts were used in the following procedure to identify signature

genes for each cluster. For each cluster, binomial regression with elastic net regularization and cross-validation was used to predict

if a cell belongs to a cluster, given gene expression profiles as features. For this, function cv.glmnet() from package glmnet v2.0-16

(Friedman et al., 2010) was used, with parameters alpha = 0.99, nfolds = 10, type.measure = ’’auc.’’ This analysis resulted in a list of

gene coefficients from the model for each cluster. Correlation of these coefficients with library-size-normalized counts from bulk

RNA-seq data (for the genes present in both lists) for each sample were used to compare bulk RNA-seq with scRNA-seq data. These

were visualized in a heatmap with z-score scaling for each column (Figure 1I).

In order to compare bulk RNA-seq data in mice with previously published human scRNA-seq data from Villani et al. (2017), we took

gene signatures of ‘‘DC2’’ and ‘‘DC3’’ cell subpopulations from Villani et al. (2017) as published in a supplementary table of that pub-

lication, file aah4573_Supplementary_Tables_1-16.xlsx, panel ‘‘Table S3.CD1C subsets.’’ We extracted these signature genes and

found homologous mouse genes using biomaRt v2.28.0. We then plotted CDF of all expressed genes (background) and of these ho-

mologs of the ‘‘DC2’’ and ‘‘DC3’’ DC2 signature genes using log2FC of bulk RNA-seq expression between splenic Tbet+ cDC2A and

Tbet– cDC2B cells, estimated as explained above. The statistical analysis was done using two-sided Kolmogorov-Smirnov test.

ATAC-seq analysis
Mouse genome assembly mm10.GRCm38 was used for ATAC-seq read alignments. Gene annotations from GENCODE vM17 were

used for all analysis. Analysis was done using R v3.4.0 (2017-04-21) and custom scripts. Reads were aligned to the mouse genome

using Bowtie2 v2.2.5 (Langmead and Salzberg, 2012) with parameters ‘‘–no-unal -X 1000–no-mixed–no-discordant.’’ Uniquely

aligned reads were extracted using SAMtools v1.9 with parameters ‘‘view -h -bS -F 4 -q 20’’ and sorted and indexed using SAMtools.

For peak calling, MACS2 v2.1.1.20160309 (Zhang et al., 2008) was used with parameters ‘‘-g hs–nomodel–shift 0–extsize 76–name

merged -p 0.1 -B–SPMR–keep-dup ’auto’–call-summits.’’ Before peak calling, all uniquely aligned reads on strand ‘‘+’’ were shifted

by 4bp, and on strand ‘‘-’’ by �5bp. Peak calling was run on all replicates together to obtain a universal list of putative peaks, with

peak summits. For each individual replicate, peak calling was run separately with the same parameters. IDR (Li et al., 2011) (https://

github.com/nboley/idr, v2.0.3) was then used to determine reproducible peaks in each of the three conditions (cDC1s, T-bet– and

T-bet+ cDC2s in the spleen). For this, putative peaks from the universal list were used as the oracle set of peaks (parameter

‘‘–peak-list’’), and lists of peak p values as detected in each individual replicate were used as scores. Peaks at IDR < 0.05 for

any pair of replicates of the same condition were called reproducible. Peaks of size 76bp or lower and peaks outside standard
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chromosomes (chr1-chr19, chrX, chrY) were removed. This resulted in the atlas of 74217 reproducible peaks that contained 177956

peak summits. Each peak was associated with the closest gene according to distance in genomic coordinates, if this distance was

not more than 50Kb. Peaks within 2Kb from a transcription start site of any annotated transcript were classified as promoter peaks;

the remaining peaks were classified as exonic if overlapping with any exon of any annotated transcript; the remaining peaks were

classified as intronic if within a gene body of any annotated gene; the remaining peaks within 50Kb of a gene were classified as inter-

genic; all the remaining peakswere left unclassified in this classification. Reads in 150bpwindows centered around summits (referred

to as peaks thereafter and in the main text) were counted using Rsubread v1.22.1. For PCA plot (Figure S4A), variance stabilizing

transformation was applied and function plotPCA() from DESeq2 was applied to 500 peaks with the largest variance (parameter

‘‘ntop = 2000’’). For differential accessibility analysis, DESeq2 v1.18.1 was applied to the read counts, with default FDR adjustment

of p values for multiple hypothesis testing. For each pairwise comparison, only the peaks detected as reproducible in the involved

conditions were used for the analysis, and furthermore peaks were called significantly more accessible in a condition only if they

were also identified as reproducible in that condition. Peaks satisfying these criteria and at FDR < 0.01 and with absolute

log2FoldChange > 0.5 were called significantly differentially accessible. In the differential accessibility analysis between T-bet–

and T-bet+ cDC2s, we identified 2399 peaks significantly more accessible in T-bet+ cDC2s and 1130 peaks in T-bet– cDC2s. In

the differential accessibility analysis between cDC1s and T-bet+ cDC2s, we identified 8711 peaks significantly more accessible in

T-bet+ cDC2s and 10322 peaks in cDC1s. In the differential accessibility analysis between cDC1s and T-bet– cDC2s, we identified

5055 peaks significantly more accessible in T-bet– cDC2s and 9018 peaks in cDC1s. In the differential accessibility analysis between

cDC1s and both T-bet+ and T-bet– cDC2s combined, we identified 6392 peaks significantly more accessible in T-bet+ and T-bet–

cDC2s and 10432 peaks in cDC1s.

Transcription factor binding motifs for Mus musculus were downloaded from CIS-BP version 1.02 (Weirauch et al., 2014) via the

web interface (compressed archive Mus_musculus_2016_06_01_2-46_pm.zip). For the DNA sequences in 150bp windows around

peak summits, script findMotifsGenome.pl from HOMER suite (Heinz et al., 2010) was run with parameters ‘‘mm10 -len 8,10,12 -size

given -S 100 -N 1000000 -bits -p 10 -cache 1000’’ in order to identify the significance of presence of each motif in the sequences of

the peaks as compared with the background sequences. We limited the analysis to motifs corresponding to expressed transcription

factors, defined as those with average library-size-normalized read count across splenic RNA-seq samples > 10 (13601 genes). We

focused only on the motifs present in at most 40%, but in at least 1% of the peak summit window sequences. The most significant

motif per transcription factor was selected for further analysis (with potentially multiple transcription factors associated with the same

motif), if it had HOMER p value < 0.001. This resulted in the list of 124 motifs for further analysis. FIMO version 4.11.2 (Grant et al.,

2011) was used to search for motif hits in 150bp windows around the peak summits in the atlas. Hits with P-value < 5e-4 were chosen

as significant. To determine transcription factors with the strongest association of predicted binding with differential accessibility

between a pair of cell states (T-bet+ versus T-bet– cDC2s, or cDC1s versus T-bet+ and T-bet– cDC2s combined), a supervised linear

regression model y �Xw was trained, where y is a vector of estimated overall log2 fold changes of chromatin accessibility, X is a

feature matrix with rows corresponding to chromatin accessibility peaks and columns corresponding to predicted transcription

factors binding sites, and w is a learned vector of regression coefficients. Only log2 fold changes of chromatin accessibility for

20000 peak summits with the highest normalized counts were used in the model. Scores of transcription factor motifs in windows

around peak summits produced by FIMO were used as feature values in X. Lasso regularization with 5-fold cross-validation was

used to avoid overfitting. Learned coefficients in this model for each transcription factor motif were used as a proxy of their associ-

ation with differential accessibility. Fifty motifs with the highest absolute value of the coefficient were visualized as a barplot. Motifs

associated with Rara/Rarg and with Rorc were very similar, but still treated as different in the above analysis, and due to lasso reg-

ularization, the motif for Rara/Rarg rather than for Rorc was initially picked among the strongest in the analysis of differential acces-

sibility between T-bet+ and T-bet– cDC2s. When the analysis was repeated with Rara/Rarg excluded, predictive performance of the

model (estimated as Spearman’s rho between real and predicted log2FC values averaged over held-out folds) did not change (rho =

0.28) and Rorc motif essentially substituted that of Rara/Rarg. This version was used for the plot in the main text (Figure 4C). The

differential accessibility of the set of peaks associated with the each of the most differentially expressed genes was displayed by

‘‘diamond’’ plots, where the y axis shows the log2 fold change of gene expression between two cell states, diamonds above

each gene name correspond to all peaks associated with the gene, and the diamond color corresponds to log2 fold change of acces-

sibility (Figure 4F). For each gene differentially expressed between a certain pair of cell states, overall differential accessibility of its

peaks was assessed as follows. A Mann-Whitney U test was used to compare the distribution of all peak accessibility log2 fold

changes between these two cell states with those of only the peaks associated with the gene, reporting (qvalue) adjusted P values

for the multiple differentially expressed genes tested. This analysis was visualized with a scatterplot where the x axis shows the log2

fold change of gene expression, the y axis shows mean accessibility log2 fold change of the peaks associated with a gene, black

indicates differential expression, and red and green indicate significant overall differential accessibility of peaks associated with a

gene (Figure 4F).

Statistical analysis
Analysis of all data was done with paired two-tailed Student’s t test, one-way or two-way ANOVA with a 95% confidence interval

(Prism, GraphPad Software). p < 0.05 was considered significant: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Details as to num-

ber of replicates, sample size, significance tests, and value and meaning of n for each experiment are included in the Methods or
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Figure legends. RNA-sequencing experiments were carried out once. Unless otherwise stated, all other experiments were carried out

independently at least twice. Mice were non-randomly allocated to experimental groups to ensure equal distribution of genotypes

between treatments. Researchers were not blinded as to genotype or treatment during the experiments. No measures were taken

to estimate sample size of to determine whether the data met the assumptions of the statistical approaches used. Significance (a)

was defined as < 0.05 throughout, after correcting for multiple comparisons. 2 mice from the tamoxifen labeling experiments in Fig-

ure 1 were excluded from the analysis because they were found not to have the R26 allele.

DATA AND CODE AVAILABILITY

The accession numbers for the raw sequencing data reported in this paper are GEO: GSE137710 and GEO: GSE130201. Scripts

reproducing the analysis will be available on request.
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Supplemental Figures
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Figure S1. Single-Cell Survey Reveals Heterogeneity of cDC2s, Related to Figure 1

A. Representative histogram showing expression of T-bet (RFP) in splenic cells from Tbx21RFP-cre mice.

(B). Expression of T-bet in CD11b+XCR1+ DCs from the intestinal lamina propria. Data representative of > 5 independent experiments, with at least 3 mice per

experiment.

(C). Expression of T-bet in splenic myeloid cells. Cells were defined as: (i) Ly-6Chi monocytes (Lin –Ly6C+Ly6G–CD11b+CX3CR1+); neutrophils (Lin–Ly6C+Ly6G+);

macrophages (Lin–CD64+Ly6C–). Lineages (Lin) were defined as: CD3e, CD90.2, CD19, CD49b and Siglec F. Each circle represents an individual mouse, error

bars represent mean ± SEM.

(D). Left: Gating strategy for single-cell sorting. DCs were defined as Lin(CD3, CD19, CD90)–Ly6C–CD64–CD11c+MHCII+. Two populations were sampled: RFP+

DCs and RFP– DCs (encompassing XCR1+ cDC1s, CD11b+RFP– and CD11b–XCR1– DCs). Right: Post-sort purity of RFP+ and RFP– cells. Contaminating

population of Ly6C+ cells identifiable on post-sort purity (lower panel).

(E). Similarity of splenic CD11c+MHCII+ cells to reference myeloid cells (ImmGen Consortium) Colors represent the Pearson correlation between the mean gene

expression from the dendritic cell cluster in the rows and the bulk reference transcriptome in the columns.

(F). Top 20 positive and negative gene loadings of PC1 for T-bet+ cDC2 clusters after cell-cycle correction (left panel). Scatterplot of PC1 and PC2 for T-bet+ cDC2

clusters after cell-cycle correction (right panel).
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Figure S2. Distinct cDC2 Subsets Express Divergent Transcription Factors and Cell Surface Markers. Related to Figure 2

(A). Enrichment of GO pathways (biological processes) in cluster 14.

(B). Graph showing AUC score (x axis) for genes differentially expressed between T-bet+ and T-bet– cDC2 clusters. Earth movers distance (EMD) on the y axis.

Dashed lines represent mEMD ± 3sEMD.

(C). Graph showing AUC score (x axis) for genes differentially expressed between T-bet– cluster 10 and all other cDC2 clusters. EMD on the y axis. Dashed lines

represent mEMD ± 3sEMD.

(D). t-SNE map of splenic DCs colored by imputed expression of Clec10a and Mgl2 demonstrating co-expression of these genes by cells in cluster 10.

(E). Representative flow cytometry plots showing expression of CLEC12A, CLEC10A and T-bet (RFP) in cDC2s isolated from spleen, peripheral lymph nodes

(PLN), mesenteric lymph nodes (MLN), large intestine lamina propria (LI), liver and lung (left). Frequency of CLEC12A+ and CLEC10A+ cells within all cDC2s (right).

Each symbol represents a single mouse. Data representative of 2 independent experiments.

(E). Cytospin analysis of Wright-Giemsa stained sorted cDC2 subsets.



Figure S3. Transcriptional and Epigenetic Landscape of cDCs, Related to Figure 4

(A). Principal component analysis (PCA) for ATAC-seq of cDC1s, T-bet+ cDC2s and T-bet– cDC2s. Each symbol represents a biological replicate for each

cell-type.

(B). Predictive value of TF motifs in peaks more accessible in cDC2s versus cDC1s.

(C). Correlation between differential ATAC-seq peak accessibility and gene expression in cDC1s versus cDC2s.



(legend on next page)



Figure S4. Environmental Cues Drive Distinct DC2 Differentiation Pathways within the Spleen, Related to Figure 5

(A). Gating strategy for the identification of DC progenitors in the bone marrow (BM)

(B). Palantir pseudo-time analysis of differentiation potential and branch probabilities from the Siglec-H+ pre-DC state to T-bet+ cDC2 and T-bet– cDC2 terminal

states.

(C). Plots showing Palantir differentiation potential (y axis) along Palantir pseudo-time (x axis) for Siglec-H+ DC and T-bet+ cDC2s (top) or Siglec-H+ DC and T-bet–

cDC2 clusters (bottom)

(D). Plots showing the top two diffusion component embeddings for Siglec-H+ DC and T-bet+ cDC2 clusters (top) or Siglec-H+ DC and Tbet– cDC2 clusters

(bottom). Black arrow indicates Siglec-H+ DC cluster cells adjacent to cells from the proliferative T-bet+ cDC2 clusters 6 and 8.

(E). Top panel: plots showing probability of each cell beingwithin 20 nearest neighbors of randomly sampled shortest paths from the Siglec-H+DC to the indicated

end points. Middle panel: plots showing the proportion of cells belonging to Siglec-H+ DC, T-bet+ cDC2, or T-bet– cDC2 from 20 nearest neighbors of randomly

sampled shortest paths. Bottom: plots showing diffusion distance step sizes for each step along the indicated shortest paths (bottom panel). Colors illustrate

cluster membership.

(F). Graph showing AUC (x axis) for genes differentially expressed between Siglec-H+ DC cluster (cluster 11) and all other cDC2 clusters. EMD on the y axis.

Dashed lines represents mEMD ± 3sEMD.

(G). Gating strategy for FACS-isolation of MHCII+ ILC3s: Lin = CD3, CD19, CD49b, Siglec-F.

(H). Heatmap reports scaled expression of 3550 differentially expressed genes (log2FC > 1, FDR < 0.01) between ILC3s and Rorgt fm cDC2s. Selected genes

listed to the right.

(I). Representative flow cytometric analysis of phenotypes of splenic progeny from Tbx21RFP-cre CD45.2+Ly6C�CD64–MHCII+CD11c+Siglec-H+ pre-DCs

adoptively transferred into sub-lethally irradiated CD45.1 recipient mice 7 days earlier (data from one experiment with n = 3).

J. Sort purified T-bet+ or T-bet– cDC2 were cultured for 24hrs in the presence of LPS, CpG, TNF-a or IFN�g. Representative overlay histogram showing the

expression of RFP(T-bet) at 24hrs. Data representative of 2 (TNF-a) or 4 (all other cytokines/TLR agonists) independent experiments, n = 2-3.



Figure S5. T-bet+ and T-bet– cDC2s Are Functionally Distinct, Related to Figure 6

(A). Cytokines detected in culture supernatant 18 hours after stimulation with CpG using a multiplexed cytokine assay.

(B). Proliferation of naive OTII CD4+ T cells 5 days after co-culture with OVA peptide and either T-bet+ cDC2s, T-bet– cDC2s or cDC1s.

Data, shown as mean ± SEM, are representative of 2 independent experiments (n = 3).



(legend on next page)



Figure S6. Human DC Heterogeneity, Related to Figure 7

(A). Violin plots showing expression distribution of mouse DC subset marker genes across human peripheral blood DC and monocyte clusters identified in Villani

et al. (2017).

(B). Representative flow cytometric analysis of mouse peripheral blood cDC2s showing absence of T-bet (RFP)+ cDC2s.

(C). Gating strategy for FACS-isolation of human spleen DCs for scRNA-seq. DCs were defined as live, LIN(CD3,CD56,CD19)�CD14–CD11C+HLA-DR+.

(D). Representative flow cytometry analysis of human spleen cDC2s gated as Lin(CD3,CD56,CD19)–CD14–CD11c+HLA-DR+CD123–XCR1–CLEC4A+ cells. Left

panel: cell surface expression of CD1c andCLEC10A by cDC2s. Right panel: overlay of CLEC10A+ andCLEC10A– cDC2s distinguished by differential expression

of CLEC4A and FcεR1a. Summary bar graphs show frequency of CD1C+CLEC10A+ and CD1C+CLEC10A– cDC2s as a percentage of cDC2s (n = 4 individuals).

(E). t-SNE embedding of 9,315 FACS-isolated CD45+ immune cells from two melanoma tumors. Colors indicate unsupervised clustering by Phenograph (left

panel) or classification based on expression of canonical markers and correlations with bulk RNA-seq data (right panel). Each dot represents an individual cell.

(F). Pearson correlations between cluster centroids in (F) and bulk RNA-seq data from purified immune populations (Jeffrey et al., 2006; Novershtern et al., 2011)

(G). t-SNE map of 2,122 myeloid cells identified in (F). Colors indicate patient sample (left) or unsupervised clustering by Phenograph (right panel). Each dot

represents an individual cell.

(H). Heatmap of normalized, log transformed and MAGIC imputed expression of top 20 differentially expressed genes, defined by the highest earth mover’s

distance (EMD), per Phenograph cluster in E. The colored bar at the top of the heatmap shows assignment of cells to clusters labeled in F, right panel.

(I). t-SNE map of human melanoma myeloid cells (H) colored by imputed expression of labeled genes.



Figure S7. Identification of cDC2 Heterogeneity, Related to Figures 1 and 2 and STAR Methods

(A). Clustering robustness measured by adjusted Rand Index (RI) for ranges of principal components and k supplied to Phenograph. In the top panel, with cDC1

(gray) and T-bet+ cDC2 (black) clusters consolidated, RI values indicate robust partitioning between the remaining clusters. In bottom row, when all other cDC2

clusters are consolidated (black), RI values indicate that partitioning is not reliable within cDC1 and T-bet+ cDC2.

(B). Heatmap showing the median R̂2 value across all genes for MAGIC imputed values calculated with varying timestep (left panel) and number of neighbors

(right panel).
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