125 research outputs found

    Conserved Features of Chromatin Remodeling Enzymes: A Dissertation

    Get PDF
    Chromatin structure plays an essential role in the regulation of many nuclear processes such as transcription, replication, recombination, and repair. It is generally accepted that chromatin remodeling is a prerequisite step in gene activation. Over recent years, large multisubunit enzymes that regulate the accessibility of nucleosomal DNA have emerged as key regulators of eukaryotic transcription. It seems likely that similar enzymes contribute to the efficiency of DNA replication, recombination, and repair. These chromatin remodeling complexes can be classified into two broad groups: (1) the ATP-dependent enzymes, which utilize the energy of ATP hydrolysis to increase the accessibility of nucleosomal DNA; and (2) histone modifying enzymes that phosphorylate, acetylate, methylate, ubiquitinate, or ADP-ribosylate the nucleosomal histones (for review see Kingston and Narlikar, 1999; Muchardt and Yaniv, 1999; Brown et al., 2000; Vignali et al., 2000; Strahl and Allis, 2000). The mechanism by which these two groups of large, multi-subunit enzymes function to alter chromatin structure is enigmatic. Studies suggest that ATP-dependent and histone acetyltransferase chromatin remodeling enzymes have widespread roles in gene expression and perform both independent and overlapping functions. Interestingly, although both groups of enzymes appear to be distinct, several features of these enzymes have been conserved from yeast to man. Thus, understanding the role of these similar features will be essential in order to elucidate the function of remodeling enzymes, their functional interrelationships, and may uncover the fundamental principals of chromatin remodeling. In this study, we use a combination of yeast molecular genetics and biochemistry to dissect out the function of individual parts of these chromatin remodeling machines and to understand how these large macromolecular assemblies are put together. In addition, we also investigate the mechanism by which the ATP-dependent enzymes exert their regulatory effects on chromatin structure. Structure/function analysis of Saccharomyces cerevisiaeSwi3p (conserved in SWI/SNF complexes across all eukaryotic phyla) reveals a unique scaffolding role for this protein as it is essential for assembly of SWI/SNF subunits. We have also characterized a novel motif that has homology to the Myb DNA binding domain, the SANT domain, and that is shared among transcriptional regulatory proteins implicated in chromatin remodeling. Mutational analysis of this domain in yeast Swi3p (SWI/SNF), Rsc8/Swh3p (RSC), and Ada2p (GCN5 HATs) reveals an essential function for the SANT domain in chromatin remodeling. Moreover, our studies suggest that this novel motif may be directly involved in mediating a functional interaction with chromatin components (i.e. histone amino terminal domains). We have also directly compared the activities of several members of the ATP-dependent chromatin remodeling enzymes. Surprisingly, we find that these enzymes utilize similar amounts of ATP to increase nucleosomal DNA accessibility. In as much, we show that changes in histone octamer comformation or composition is not a requirement or consequence of chromatin remodeling by SWI/SNF. Taken together, these data suggest a similar mechanism for ATP-utilizing chromatin remodeling enzymes in which disruption of histone-DNA contacts occur without consequence to the structure of the histone octamer. These data have striking implications for how we view the mechanism of chromatin remodeling

    H2A.Z: a molecular rheostat for transcriptional control

    Get PDF
    The replacement of nucleosomal H2A with the histone variant H2A.Z is critical for regulating DNA-mediated processes across eukaryotes and for early development of multicellular organisms. How this variant performs these seemingly diverse roles has remained largely enigmatic. Here, we discuss recent mechanistic insights that have begun to reveal how H2A.Z functions as a molecular rheostat for gene control. We focus on specific examples in metazoans as a model for understanding how H2A.Z integrates information from histone post-translational modifications, other histone variants, and transcription factors (TFs) to regulate proper induction of gene expression programs in response to cellular cues. Finally, we propose a general model of how H2A.Z incorporation regulates chromatin states in diverse processes

    Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease

    Get PDF
    Cardiogenesis in mammals requires exquisite control of gene expression and faulty regulation of transcriptional programs underpins congenital heart disease (CHD), the most common defect among live births. Similarly, many adult cardiac diseases involve transcriptional changes and sometimes have a developmental basis. Long non‐coding RNAs (lncRNAs) are a novel class of transcripts that regulate cellular processes by controlling gene expression; however, detailed insights into their biological and mechanistic functions are only beginning to emerge. Here, we discuss recent findings suggesting that lncRNAs are important factors in regulation of mammalian cardiogenesis and in the pathogenesis of CHD as well as adult cardiac disease. We also outline potential methodological and conceptual considerations for future studies of lncRNAs in the heart and other contexts.National Heart, Lung, and Blood Institute (Bench to Bassinet Program U01HL098179)National Heart, Lung, and Blood Institute (Bench to Bassinet Program U01HL098188

    Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment

    Get PDF
    Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm toward a cardiac fate. We find that Bvht is necessary for activation of a core cardiovascular gene network and functions upstream of mesoderm posterior 1 (MesP1), a master regulator of a common multipotent cardiovascular progenitor. We also show that Bvht interacts with SUZ12, a component of polycomb-repressive complex 2 (PRC2), during cardiomyocyte differentiation, suggesting that Bvht mediates epigenetic regulation of cardiac commitment. Finally, we demonstrate a role for Bvht in maintaining cardiac fate in neonatal cardiomyocytes. Together, our work provides evidence for a long noncoding RNA with critical roles in the establishment of the cardiovascular lineage during mammalian development.Damon Runyon Cancer Research Foundation (DRG 2032-09)Damon Runyon Cancer Research Foundation (DFS 04-12)European Molecular Biology Organization (Long-term Fellowship)National Heart, Lung, and Blood Institute. Bench to Bassinet Program (U01HL098179)National Heart, Lung, and Blood Institute. Bench to Bassinet Program (U01HL098188)Smith Family FoundationPew Charitable Trusts. Program in the Biomedical Science

    Cell size is a determinant of stem cell potential during aging

    Get PDF
    Stem cells are remarkably small. Whether small size is important for stem cell function is unknown. We find that hematopoietic stem cells (HSCs) enlarge under conditions known to decrease stem cell function. This decreased fitness of large HSCs is due to reduced proliferation and was accompanied by altered metabolism. Preventing HSC enlargement or reducing large HSCs in size averts the loss of stem cell potential under conditions causing stem cell exhaustion. Last, we show that murine and human HSCs enlarge during aging. Preventing this age-dependent enlargement improves HSC function. We conclude that small cell size is important for stem cell function in vivo and propose that stem cell enlargement contributes to their functional decline during aging.Peer reviewe

    Emergent mechanical control of vascular morphogenesis

    Get PDF
    Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization. Tissue stiffness increases during vascular morphogenesis resulting from emergent interactions between endothelial cells, fibroblasts, and ECM and correlates with enhanced vascular function. Contractile cellular forces are key to emergent tissue stiffening and synergize with ECM mechanical properties to modulate the mechanics of vascularization. Emergent tissue stiffening and vascular function rely on mechanotransduction signaling within fibroblasts, mediated by YAP1. Mouse embryos lacking YAP1 in fibroblasts exhibit both reduced tissue stiffness and develop lethal vascular defects. Translating our findings through biology-inspired vascular tissue engineering approaches will have substantial implications in regenerative medicine

    Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals

    Get PDF
    Hox genes controlling motor neuron subtype identity are expressed in rostrocaudal patterns that are spatially and temporally collinear with their chromosomal organization. Here we demonstrate that Hox chromatin is subdivided into discrete domains that are controlled by rostrocaudal patterning signals that trigger rapid, domain-wide clearance of repressive histone H3 Lys27 trimethylation (H3K27me3) polycomb modifications. Treatment of differentiating mouse neural progenitors with retinoic acid leads to activation and binding of retinoic acid receptors (RARs) to the Hox1–Hox5 chromatin domains, which is followed by a rapid domain-wide removal of H3K27me3 and acquisition of cervical spinal identity. Wnt and fibroblast growth factor (FGF) signals induce expression of the Cdx2 transcription factor that binds and clears H3K27me3 from the Hox1–Hox9 chromatin domains, leading to specification of brachial or thoracic spinal identity. We propose that rapid clearance of repressive modifications in response to transient patterning signals encodes global rostrocaudal neural identity and that maintenance of these chromatin domains ensures the transmission of positional identity to postmitotic motor neurons later in development.Leona M. and Harry B. Helmsley Charitable TrustNational Institutes of Health (U.S.) (Grant P01 NS055923)Smith Family Foundatio

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies

    Get PDF
    Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS "physiome-on-a-chip" approaches in drug discovery.United States. Army Research Office (Grant W911NF-12-2-0039

    H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation

    Get PDF
    The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z[superscript AP3]) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z[superscript AP3] interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z[superscript AP3] was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z[superscript AP3] ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z[superscript AP3] ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z[superscript AP3] displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z[superscript AP3] mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.Massachusetts Life Sciences Center (David H. Koch Institute for Integrative Cancer Research at MIT Core Grant P30-CA14051)National Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systems (Grant CBET-0939511)MIT Faculty Start-up FundMassachusetts Institute of Technology. Computational and Systems Biology Initiative (Merck & Co. Postdoctoral Fellowship
    corecore