15 research outputs found

    Withdrawal of mechanical ventilation in amyotrophic lateral sclerosis patients: a multicenter Italian survey

    Get PDF
    Background: Law 219/2017 was approved in Italy in December 2017, after a years-long debate on the autonomy of healthcare choices. This Law, for the first time in Italian legislation, guarantees the patient's right to request for withdrawal of life-sustaining treatments, including mechanical ventilation (MV). Objective: To investigate the current status of MV withdrawal in amyotrophic lateral sclerosis (ALS) patients in Italy and to assess the impact of Law 219/2017 on this practice. Methods: We conducted a Web-based survey, addressed to Italian neurologists with expertise in ALS care, and members of the Motor Neuron Disease Study Group of the Italian Society of Neurology. Results: Out of 40 ALS Italian centers, 34 (85.0%) responded to the survey. Law 219/2017 was followed by an increasing trend in MV withdrawals, and a significant increase of neurologists involved in this procedure (p 0.004). However, variations across Italian ALS centers were observed, regarding the inconsistent involvement of community health services and palliative care (PC) services, and the intervention and composition of the multidisciplinary team. Conclusions: Law 219/2017 has had a positive impact on the practice of MV withdrawal in ALS patients in Italy. The recent growing public attention on end-of-life care choices, along with the cultural and social changes in Italy, requires further regulatory frameworks that strengthen tools for self-determination, increased investment of resources in community and PC health services, and practical recommendations and guidelines for health workers involved

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-γ released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    Analysis of miRNA rare variants in amyotrophic lateral sclerosis and in silico prediction of their biological effects

    No full text
    Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and/or lower motor neurons and characterized by complex etiology. Familial cases show high genetic heterogeneity and sporadic cases (90%) are associated with several genetic and environmental risk factors. Among the genetic risk factors, the contribution of non-coding elements, such as microRNAs (miRNAs), to ALS disease susceptibility remains largely unexplored. Aim: This work aims to identify rare variants in miRNA genes in sporadic ALS (sALS) patients which may cause a defective miRNA maturation or altered target gene recognition by changing miRNA secondary structure or seed sequence, respectively. Methods: Rare variants located in miRNA loci with a minor allele frequency (MAF) < 0.01 were extracted from whole genome sequencing (WGS) data of 100 sALS patients. The secondary pre-miRNA structures were predicted using MiRVas to evaluate the impact of the variants on RNA folding process. Human TargetScan was used to retrieve all the potential target genes of miRNAs with variants in the seed region. Over Representation Analysis (ORA) was conducted to compare the lists of target genes for the reference and mutated miRNAs in the seed sequence. Results: Our analysis identified 86 rare variants in 77 distinct miRNAs and distributed in different parts of the miRNA precursors. The presence of these variants changed miRNA secondary structures in & SIM;70% of MiRVas predictions. By focusing on the 6 rare variants mapping within the seed sequence, the predicted target genes increased in number compared to the reference miRNA and included novel targets in a proportion ranging from 30 to 82%. Interestingly, ORA revealed significant changes in gene set enrichment only for mutated miR-509-1 and miR-941-3 for which the Gene Ontology term related to "nervous system development " was absent and present, respectively, compared to target lists of the reference miRNA. Conclusion: We here developed a workflow to study miRNA rare variants from WGS data and to predict their biological effects on miRNA folding, maturation and target gene recognition. Although this in silico approach certainly needs functional validation in vitro and in vivo, it may help define the role of miRNA variability in ALS and complex diseases

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    No full text
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines. MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-gamma released after spike specific stimulation. ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus. DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of <i>C9ORF72</i>

    No full text
    A large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72, a gene located on chromosome 9p21, has been recently reported to be responsible for ∼40% of familial amyotrophic lateral sclerosis cases of European ancestry. The aim of the current article was to describe the phenotype of amyotrophic lateral sclerosis cases carrying the expansion by providing a detailed clinical description of affected cases from representative multi-generational kindreds, and by analysing the age of onset, gender ratio and survival in a large cohort of patients with familial amyotrophic lateral sclerosis. We collected DNA and analysed phenotype data for 141 index Italian familial amyotrophic lateral sclerosis cases (21 of Sardinian ancestry) and 41 German index familial amyotrophic lateral sclerosis cases. Pathogenic repeat expansions were detected in 45 (37.5%) patients from mainland Italy, 12 (57.1%) patients of Sardinian ancestry and nine (22.0%) of the 41 German index familial amyotrophic lateral sclerosis cases. The disease was maternally transmitted in 27 (49.1%) pedigrees and paternally transmitted in 28 (50.9%) pedigrees (P = non-significant). On average, children developed disease 7.0 years earlier than their parents [children: 55.8 years (standard deviation 7.9), parents: 62.8 (standard deviation 10.9); P = 0.003]. Parental phenotype influenced the type of clinical symptoms manifested by the child: of the 13 cases where the affected parent had an amyotrophic lateral sclerosis–frontotemporal dementia or frontotemporal dementia, the affected child also developed amyotrophic lateral sclerosis–frontotemporal dementia in nine cases. When compared with patients carrying mutations of other amyotrophic lateral sclerosis-related genes, those with C9ORF72 expansion had commonly a bulbar onset (42.2% compared with 25.0% among non-C9ORF72 expansion cases, P = 0.03) and cognitive impairment (46.7% compared with 9.1% among non-C9ORF72 expansion cases, P = 0.0001). Median survival from symptom onset among cases carrying C9ORF72 repeat expansion was 3.2 years lower than that of patients carrying TARDBP mutations (5.0 years; 95% confidence interval: 3.6–7.2) and longer than those with FUS mutations (1.9 years; 95% confidence interval: 1.7–2.1). We conclude that C9ORF72 hexanucleotide repeat expansions were the most frequent mutation in our large cohort of patients with familial amyotrophic lateral sclerosis of Italian, Sardinian and German ancestry. Together with mutation of SOD1, TARDBP and FUS, mutations of C9ORF72 account for ∼60% of familial amyotrophic lateral sclerosis in Italy. Patients with C9ORF72 hexanucleotide repeat expansions present some phenotypic differences compared with patients with mutations of other genes or with unknown mutations, namely a high incidence of bulbar-onset disease and comorbidity with frontotemporal dementia. Their pedigrees typically display a high frequency of cases with pure frontotemporal dementia, widening the concept of familial amyotrophic lateral sclerosis

    C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population.

    No full text
    It has been recently reported that a large proportion of patients with familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with a hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72. We have assessed 1757 Italian sporadic ALS cases, 133 from Sardinia, 101 from Sicily, and 1523 from mainland Italy. Sixty (3.7%) of 1624 mainland Italians and Sicilians and 9 (6.8%) of the 133 Sardinian sporadic ALS cases carried the pathogenic repeat expansion. None of the 619 regionally matched control samples (1238 chromosomes) carried the expansion. Twenty-five cases (36.2%) had behavioral FTD in addition to ALS. FTD or unspecified dementia was also detected in 19 pedigrees (27.5%) in first-degree relatives of ALS patients. Cases carrying the C9ORF72 hexanucleotide expansion survived 1 year less than cases who did not carry this mutation. In conclusion, we found that C9ORF72 hexanucleotide repeat expansions represents a sizeable proportion of apparent sporadic ALS in the Italian and Sardinian population, representing by far the most common mutation in Italy and the second most common in Sardinia

    CHCH10 mutations in an Italian cohort of familial and sporadic amyotrophic lateral sclerosis patients

    Get PDF
    Mutations in CHCHD10 have recently been described as a cause of frontotemporal dementia (FTD) comorbid with amyotrophic lateral sclerosis (ALS). The aim of this study was to assess the frequency and clinical characteristics of CHCHD10 mutations in Italian patients diagnosed with familial (n= 64) and apparently sporadic ALS (n= 224). Three apparently sporadic patients were found to carry c.100C&gt;T (p.Pro34Ser) heterozygous variant in the exon 2 of CHCHD10. This mutation had been previously described in 2 unrelated French patients with FTD-ALS. However, our patients had a typical ALS, without evidence of FTD, cerebellar or extrapyramidal signs, or sensorineural deficits. We confirm that CHCHD10 mutations account for ~1% of Italian ALS patients and are a cause of disease in subjects without dementia or other atypical clinical signs

    HFE p.H63D polymorphism does not influence ALS phenotype and survival

    No full text
    It has been recently reported that the p.His63Asp polymorphism of the HFE gene accelerates disease progression both in the SOD1 transgenic mouse and in amyotrophic lateral sclerosis (ALS) patients. We have evaluated the effect of HFE p.His63Asp polymorphism on the phenotype in 1351 Italian ALS patients (232 of Sardinian ancestry). Patients were genotyped for the HFE p.His63Asp polymorphism (CC, GC, and GG). All patients were also assessed for C9ORF72, TARDBP, SOD1, and FUS mutations. Of the 1351 ALS patients, 363 (29.2%) were heterozygous (GC) for the p.His63Asp polymorphism and 30 (2.2%) were homozygous for the minor allele (GG). Patients with CC, GC, and GG polymorphisms did not significantly differ by age at onset, site of onset of symptoms, and survival; however, in SOD1 patients with CG or GG polymorphism had a significantly longer survival than those with a CC polymorphism. Differently from what observed in the mouse model of ALS, the HFE p.His63Asp polymorphism has no effect on ALS phenotype in this large series of Italian ALS patients
    corecore