13,922 research outputs found

    Average motion of emerging solar active region polarities I: Two phases of emergence

    Full text link
    Our goal is to constrain models of active region formation by tracking the average motion of active region polarity pairs as they emerge onto the surface. We measured the motion of the two main opposite polarities in 153 emerging active regions (EARs) using line-of-sight magnetic field observations from the Solar Dynamics Observatory Helioseismic Emerging Active Region (SDO/HEAR) survey (Schunker et al. 2016). We first measured the position of each of the polarities eight hours after emergence and tracked their location forwards and backwards in time. We find that, on average, the polarities emerge with an east-west orientation and the separation speed between the polarities increases. At about 0.1 days after emergence, the average separation speed reaches a peak value of 229 +/- 11 m/s, and then starts to decrease, and about 2.5 days after emergence the polarities stop separating. We also find that the separation and the separation speed in the east-west direction are systematically larger for active regions with higher flux. Our results reveal two phases of the emergence process defined by the rate of change of the separation speed as the polarities move apart. Phase 1 begins when the opposite polarity pairs first appear at the surface, with an east-west alignment and an increasing separation speed. We define Phase 2 to begin when the separation speed starts to decrease, and ends when the polarities have stopped separating. This is consistent with the picture of Chen, Rempel, & Fan (2017): the peak of a flux tube breaks through the surface during Phase 1. During Phase 2 the magnetic field lines are straightened by magnetic tension, so that the polarities continue to move apart, until they eventually lie directly above their anchored subsurface footpoints.Comment: accepted A&

    Tailoring strain in SrTiO3 compound by low energy He+ irradiation

    Full text link
    The ability to generate a change of the lattice parameter in a near-surface layer of a controllable thickness by ion implantation of strontium titanate is reported here using low energy He+ ions. The induced strain follows a distribution within a typical near-surface layer of 200 nm as obtained from structural analysis. Due to clamping effect from the underlying layer, only perpendicular expansion is observed. Maximum distortions up to 5-7% are obtained with no evidence of amorphisation at fluences of 1E16 He+ ions/cm2 and ion energies in the range 10-30 keV.Comment: 11 pages, 4 figures, Accepted for publication in Europhysics Letter (http://iopscience.iop.org/0295-5075

    Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data

    Get PDF
    International audienceIrrigation development is rapidly expanding inmostly rainfed Sub-Saharan Africa. This expansion underscoresthe need for a more comprehensive understandingof water resources beyond surface water. Gravity Recoveryand Climate Experiment (GRACE) satellites provide valuableinformation on spatio-temporal variability in water storage.The objective of this study was to calibrate and evaluatea semi-distributed regional-scale hydrologic model basedon the Soil and Water Assessment Tool (SWAT) code forbasins in Sub-Saharan Africa using seven-year (July 2002–April 2009) 10-day GRACE data and multi-site river dischargedata. The analysis was conducted in a multi-criteriaframework. In spite of the uncertainty arising from the tradeoffin optimising model parameters with respect to two noncommensurablecriteria defined for two fluxes, SWAT wasfound to perform well in simulating total water storage variabilityin most areas of Sub-Saharan Africa, which havesemi-arid and sub-humid climates, and that among variouswater storages represented in SWAT, water storage variationsin soil, vadose zone and groundwater are dominant. Thestudy also showed that the simulated total water storage variationstend to have less agreement with GRACE data in aridand equatorial humid regions, and model-based partitioningof total water storage variations into different water storagecompartments may be highly uncertain. Thus, future workwill be needed for model enhancement in these areas with inferiormodel fit and for uncertainty reduction in componentwiseestimation of water storage variations

    Ramsey interferometry with oppositely detuned fields

    Get PDF
    We report a narrowing of the interference pattern obtained in an atomic Ramsey interferometer if the two separated fields have different frequency and their phase difference is controlled. The width of the Ramsey fringes depends inversely on the free flight time of ground state atoms before entering the first field region in addition to the time between the fields. The effect is stable also for atomic wavepackets with initial position and momentum distributions and for realistic mode functions.Comment: 6 pages, 6 figure

    Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception

    Full text link
    Choosing an appropriate set of stimuli is essential to characterize the response of a sensory system to a particular functional dimension, such as the eye movement following the motion of a visual scene. Here, we describe a framework to generate random texture movies with controlled information content, i.e., Motion Clouds. These stimuli are defined using a generative model that is based on controlled experimental parametrization. We show that Motion Clouds correspond to dense mixing of localized moving gratings with random positions. Their global envelope is similar to natural-like stimulation with an approximate full-field translation corresponding to a retinal slip. We describe the construction of these stimuli mathematically and propose an open-source Python-based implementation. Examples of the use of this framework are shown. We also propose extensions to other modalities such as color vision, touch, and audition

    Ejection of a Low Mass Star in a Young Stellar System in Taurus

    Full text link
    We present the analysis of high angular resolution VLA radio observations, made at eleven epochs over the last 20 years, of the multiple system T Tauri. One of the sources (Sb) in the system has moved at moderate speed (5-10 km/s), on an apparently elliptical orbit during the first 15 years of observations, but after a close (< 2 AU) encounter with the source Sa, it appears to have accelerated westward to about 20 km/s in the last few years. Such a dramatic orbital change most probably indicates that Sb has just suffered an ejection - which would be the first such event ever detected. Whether Sb will ultimately stay on a highly elliptical bound orbit, or whether it will leave the system altogether will be known with about five more years of observations.Comment: 4 pages, accepter in ApJ Letter

    Effects of UV-organic interaction and Martian conditions on the survivability of organics

    Get PDF
    This work was funded by the Leverhulme Trust (RPG-2015-071). Dr. C. Cousins also wishes to acknowledge funding from the Royal Society of Edinburgh. This work was financed by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia in the framework of the project POCI-01-0145-FEDER-029932 (PTDC/FIS-AST/29932/2017).Exogenous organic molecules are delivered to the surface of Mars annually, yet their fate is largely unknown. Likewise, the survivability of putative organic biomarkers directly implicates current Mars surface exploration ambitions. Among these, amino acids are valuable target molecules due to their abiogenic and biological origins. We present the fundamental, but not previously considered, factors that affect the fate of amino acids embedded in Mars mineral analogues when exposed to ionising radiation. Using existing experimental datasets, we show that the attenuation coefficient at 200 nm for amino acids is an effective parameter for quantifying organic survivability, especially when mineral shielding is limited or absent. Conversely, the dielectric constant of a material is a potential key parameter regarding mineral shielding, as it accounts for iron content, and the physical properties of the material (pore size, surface area or water content). Finally, we combine Martian climatic parameters (surface temperature and atmospheric opacity) to show that the relative UV environment varies significantly on Mars as a function of latitude, providing a reference point for future Mars simulation studies.PostprintPeer reviewe

    Novel Charge Sensitive Amplifier Design Methodology suitable for Large Detector Capacitance Applications

    Get PDF
    Current mode charge sensitive amplifier (CSA) topology and related methodology for use as pre-amplification block in radiation detection read out front end IC systems is proposed1. It is based on the use of a suitably configured current conveyor topology providing advantageous noise performance characteristics in comparison to the typical used CSA structures. In the proposed architecture the noise at the output of the CSA is independent of the detector capacitance value, allowing the use of large area detectors without affecting the system noise performance. Theoretical analysis and simulation analysis are performed concerning the operation – performance of the proposed topology. Measurement results on a current mode CSA prototype fabricated with a 0.35 μm CMOS process by Austriamicrosystems are provided supporting the theoretical and simulation results and confirming the performance mainly in terms of the noise performance dependency on the detector capacitance value
    • …
    corecore