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Abstract. Irrigation development is rapidly expanding in
mostly rainfed Sub-Saharan Africa. This expansion under-
scores the need for a more comprehensive understanding
of water resources beyond surface water. Gravity Recovery
and Climate Experiment (GRACE) satellites provide valu-
able information on spatio-temporal variability in water stor-
age. The objective of this study was to calibrate and evalu-
ate a semi-distributed regional-scale hydrologic model based
on the Soil and Water Assessment Tool (SWAT) code for
basins in Sub-Saharan Africa using seven-year (July 2002–
April 2009) 10-day GRACE data and multi-site river dis-
charge data. The analysis was conducted in a multi-criteria
framework. In spite of the uncertainty arising from the trade-
off in optimising model parameters with respect to two non-
commensurable criteria defined for two fluxes, SWAT was
found to perform well in simulating total water storage vari-
ability in most areas of Sub-Saharan Africa, which have
semi-arid and sub-humid climates, and that among various
water storages represented in SWAT, water storage varia-
tions in soil, vadose zone and groundwater are dominant. The
study also showed that the simulated total water storage vari-
ations tend to have less agreement with GRACE data in arid
and equatorial humid regions, and model-based partitioning
of total water storage variations into different water storage
compartments may be highly uncertain. Thus, future work
will be needed for model enhancement in these areas with in-
ferior model fit and for uncertainty reduction in component-
wise estimation of water storage variations.

1 Introduction

Sub-Saharan Africa (SSA) is used as a collective term that
refers to African nations which lie (or partially lie) south of
the Sahara. The region makes up about 80 % of the African
and 10 % of the global population. Agriculture forms the
backbone of the SSA economy; however, SSA countries
largely missed the green revolution. The agricultural produc-
tivity in SSA countries remains low relative to other parts
of the world and the region is still beset with food insecu-
rity. The number of estimated undernourished people in SSA
in 2010 reached 239 million (FAO, 2010). SSA is also the
only region where childhood malnutrition is projected to in-
crease as a result of rapid population growth, climate change
and continued low productivity in agriculture (Rosegrant et
al., 2009). Annual population growth in SSA is 2.2 %, much
higher than global average of 1.1 % (World Bank, 2009). In
addition, SSA is regarded as the region with a particularly
low capacity to adapt to climate change (IPCC, 2007).

Sustainable intensification of agriculture, with a focus on
irrigation development, is considered a key pillar for increas-
ing agricultural productivity in SSA (Rosegrant et al., 2002;
Molden, 2007; Rockstr̈om et al., 2007). SSA straddles the
Equator and is dominated by tropical and sub-tropical cli-
mate. Rainfall in SSA is highly variable both spatially and
temporally and constitutes a more critical factor than tem-
perature for agriculture. Limited water availability, particu-
larly during droughts, is a key reason for crop failure, espe-
cially considering the fact that SSA agriculture is predomi-
nantly rainfed with only 3 % of the cultivated area irrigated
(Siebert, 2010; FAO, 2011). Both international development
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banks and African governments have pledged to significantly
increase irrigation development to address low agricultural
productivity, rural poverty and food security challenges in
the region.

Significant expansion of irrigated agriculture in SSA, how-
ever, will require a more comprehensive understanding of
water resources in the region. Mathematical models are im-
portant tools for scientific investigation and to support pol-
icy decisions. They provide a feasible and economical way
to explore key hydrologic processes and to evaluate alterna-
tive management options where direct observation and ex-
perimentation are not possible, are costly, or both. However,
hydrologic modelling is challenging, particularly for regions
with limited data. Models are only a rough representation
of reality. Model calibration and evaluation using historical
monitoring data is critical before the model is used to provide
reliable results.

In this study, we present the calibration and evaluation
of a regional-scale semi-distributed watershed model using
GRACE data. The model was developed to simulate hydrol-
ogy in Sub-Saharan African countries, and the model de-
velopment is based on the Soil and Water Assessment Tool
(SWAT) code (Arnold et al., 1998). SWAT is a physically-
based comprehensive river basin model with a proven track
record of successful application globally, including in agri-
cultural water management (e.g., Kim et al., 2008; Xie et al.,
2008, 2011; Dhar and Mazumdar, 2009; Oeurng et al., 2011).
The size of the study river basins in reported SWAT applica-
tions typically range from a few square kilometres to tens
of thousands of square kilometres. However, the model also
shows potential for watershed studies at very large scales.
Related to Africa, SWAT was applied to West Africa and
to the entire continent to estimate blue and green water re-
sources by Schuol et al. (2008a, b).

Conventional processes for calibrating and validating hy-
drologic models generally use stream discharge data. In pre-
vious SWAT applications in Africa, the model was cali-
brated and validated using river discharge time series data
on monthly basis (Schuol et al., 2008a, b). In the model cali-
bration and evaluation study reported in this paper, satellite-
based observations of total water storage (TWS) variations
derived from the Gravity Recovery And Climate Experi-
ment (GRACE) were used to complement discharge data.
GRACE is a joint mission launched in 2002 by NASA and
the German Space Agency (DLR) to accurately map the
Earth’s gravity field (Tapley et al., 2004). After corrections
for tidal and atmospheric mass variations, the hydrologic cy-
cle is the primary source of variations in the Earth’s gravity
field on the continents (Schmidt et al., 2008). Variations in
TWS (i.e., water storages variations integrated vertically over
all water storage layers) can be inferred from the GRACE
gravity signal.

Including additional state observations other than river
discharge expands the data base for model evaluation and
may help generate additional insights into model perfor-

mance (Parajka et al., 2006; Fenicia et al., 2008; Konz and
Seibert, 2010). In this study, the merits of incorporating
GRACE-based hydrologic observations into the calibration
and evaluation of the SWAT model of Sub-Saharan Africa
(SWAT-SSA) are two-fold. Firstly, the river systems in SSA
are poorly monitored and many river basins are ungauged.
GRACE-based TWS variations have a global coverage and,
thus, offer the opportunity to calibrate and evaluate the model
for those areas where river discharge data are not available
or sparse. Secondly, river discharge is part of “blue” water,
which is the traditional focus of water resources planning and
management, but only accounts for a small portion of total
water resources. Over the past decade, the definition of agri-
cultural water management has widened to include the entire
hydrologic cycle (e.g., Falkenmark and Rockström, 2006).
GRACE data provide direct estimates of TWS to help verify
the capacity of the SWAT model to simulate spatio-temporal
variability across all water balance components.

GRACE has been widely used to monitor changes in wa-
ter mass redistribution for various basins globally. For ex-
ample, GRACE has been used to quantify changes in wa-
ter storage in response to droughts with a specific focus
on groundwater systems (Leblanc et al., 2009; Chen et al.,
2010). Water storage in East African Great Lakes was esti-
mated using GRACE data as well (Becker et al., 2010). Many
studies evaluated groundwater depletion related to irrigation
(NW India: Rodell et al., 2009; California, US: Famiglietti
et al., 2011) with some studies emphasising ground refer-
encing using well data (Longuevergne et al., 2010; Scan-
lon et al., 2012). Good correspondence was found between
GRACE-based storage estimates and well data within uncer-
tainty envelopes of GRACE-based estimates. In addition to
basin scale and global studies of changes in water storage,
GRACE is also widely used in modelling studies to condi-
tion land surface models (Guntner, 2008) and for data assim-
ilation (Zaitchik et al., 2008). To date most studies that use
GRACE data for model conditioning are limited to model
validation without significant calibration or model parame-
ter tuning to GRACE data (Niu and Yang, 2006; Ngo-Duc et
al., 2007; Syed et al., 2008; Yirdaw et al., 2009; Alkama et
al., 2010; Tang et al., 2010; Grippa et al., 2011; Yang et al.,
2011). Werth et al. (2009, 2010) may be the first to present
calibration analyses for water storage variability in global
hydrologic modelling using GRACE data. In their studies,
GRACE-based water storage variations were used to cali-
brate and validate the WaterGAP Global Hydrology Model
(WGHM) for 28 major river basins globally. More recently,
Milzow et al. (2011) combined GRACE data with altimetry
and Synthetic Aperture Radar (SAR) surface soil moisture
data to calibrate and validate the SWAT model for the Oka-
vango catchment in Southern Africa. The study presented in
this paper is focused on the calibration and evaluation of the
SWAT model at a regional scale. The modelled area covers
all SSA. Furthermore, GRACE data used in this study have a
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Fig. 1 Study area boundary, sub-region division, and watershed delineation in SWAT-SSA 812 
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Fig. 1. Study area boundary, sub-region division and watershed de-
lineation in SWAT-SSA model setup.

finer temporal scale (10-day) relative to the typical monthly
interval for most GRACE products.

The rest of the paper is organised as follows: the setup of
the SWAT model is described in Sect. 2, and the key datasets
and steps for calibrating and evaluating the SWAT-SSA mod-
els are described in Sect. 3 through 5. Section 6 presents the
results of the model calibration and validation. A summary
of the major findings from this study and their implications
are provided in Sect. 7.

2 SWAT model setup

The model area in this study is∼ 21 million km2 (Fig. 1).
The major datasets used for the setup or initial parameterisa-
tion of the SWAT-SSA model are listed in Table 1. The data
acquisition and processing strategy in our study are similar to
those described in Schuol et al. (2008a, b), but updated data
or alternative options were selected in most cases.

The drainage topology of the study region is represented
in SWAT by partitioning the river basins into subbasins and
defining the corresponding drainage network of the river
system with one river channel segment in each subbasin.
Elevation data used in this step of watershed delineation
were clipped from the HydroSHEDS database (Lehner et
al., 2008). HydroSHEDS is a derivative mapping product

Table 1.The datasets for SWAT model setup.

Category Source

Elevation HydroSHEDS

Soil Harmonized world soil database
(HWSD)

Land cover Global land cover (GLC) 2000

Lakes & reservoirs Global lake and wetland database
(GLWD)

Climate Precipitation: Global Precipita-
tion Climate Project (GPCP)
Temperature and relative humid-
ity: Goddard Earth Observing
System model version 4 and ver-
sion 5 (GEOS-4 & GEOS-5)
Solar radiation: Release 3 of the
NASA/GEWEX Surface Radia-
tion Budget (GEWEX SRB 3.0)
project and NASA’s Fast Long-
wave And SHortwave Radiative
Fluxes (FLASHFlux) project

from NASA’s 3 arc-second (approximately 90 m in equato-
rial area) SRTM (Shuttle Radar Topography Mission) eleva-
tion data and is the best currently available (with highest res-
olution) hydrologically conditioned digital elevation dataset
for SSA. Based on topographic analysis of HydroSHEDS el-
evation data, SSA was divided into 1488 subbasins (Fig. 1).
Furthermore, SWAT is a semi-distributed watershed model
with potentially different parameter values for different sub-
basins/reaches. To reflect the spatial variability of SWAT pa-
rameters in calibration and considering computational ef-
ficiency, the SSA was divided into 10 sub-continental re-
gions; one SWAT model was set up and calibrated separately
for each sub-continental region (Fig. 1; Table 2).

Within a subbasin, SWAT allows multiple hydrologic
response units (HRUs) to be defined that reflect spatial
variability in soil and land cover distributions. However,
due to computational limitations, only one HRU with the
dominant land cover and soil was created for each sub-
basin (Winchell et al., 2007). The soil data were ob-
tained from the Harmonized World Soil Database (HWSD,
v. 1.1, FAO/IIASA/ISRIC/ISSCAS/JRC, 2009) and the
land cover data were obtained from the Global Land
Cover 2000 database (European Commission, Joint Re-
search Centre, 2003,http://bioval.jrc.ec.europa.eu/products/
glc2000/glc2000.php). The HWSD contains updated soil
data for eastern, central and southern African countries rel-
ative to the FAO/UNESCO Soil Map of the World. The
soil attribute data in HWSD meet most requirements for
SWAT model parameterisation; however, two important pa-
rameters that describe the hydrologic properties of soils
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Table 2.Sub-regions in SWAT-SSA model setup and calibration.

Area Area
Name (×103 km2) Name (×103 km2)

West Africa 3550 Congo 4474
Volta 534 Eastern Africa 808
Chad 2576 Southern Africa 2928
Nile 2841 Zambezi 1365
Horn of Africa 1477 Madagascar 309

Total: 20 862

(available water capacity and saturated hydraulic conduc-
tivity) are missing and were estimated using pedotransfer
functions (Saxton et al., 1986; Schaap et al., 2001).

Climate forcing data for SWAT include 1 degree daily
(1DD) precipitation, temperature, solar radiation and rel-
ative humidity data and were obtained from the NASA
Langley Research Center POWER Project. A GIS layer
of polygon-based SWAT subbasin boundaries was overlaid
with a GIS layer of climate gridded data to calculate frac-
tions of area covered by different climate data grid cells
for each subbasin and to compute area-weighted values of
climatic variables as basin-wide estimates of these vari-
ables. The original source of the precipitation data is the
Global Precipitation Climate Project (GPCP,http://precip.
gsfc.nasa.gov). The 1-DD GPCP dataset combined obser-
vations from multiple sensors (Huffman et al., 2001). The
data for other climate variables were compiled from various
NASA’s projects (Table 1) by the POWER project and were
primarily used for estimation of potential evapotranspiration
(PET). SWAT includes three different methods for estimating
PET (Neitsch et al., 2005) with varying data requirements
and the Priestley-Taylor method (Priestley and Taylor, 1972)
was selected because it is considered more accurate than the
Hargreaves method (Hargreaves and Samani, 1985), which
is temperature-based, and reliable estimates of wind speed
required for the Penman-Monteith method (Monteith, 1965)
were not available at the time of this study.

SWAT also provides two options for simulating flow rout-
ing in river channels. The variable storage method was used
to route water in river channels because pilot simulations
suggested that this is more robust than the Muskingum option
in this study. Anthropogenic impacts on water resources were
considered to be negligible in SSA. Agriculture is the domi-
nant water use sector. However, current agriculture in SSA is
mainly rainfed; the area of SSA equipped for irrigation only
accounts for 3 % of the total cultivated area (Siebert, 2010;
FAO, 2011). Therefore, existing irrigation was not simulated
in this study.

SSA has a number of large fresh water bodies, such as
Lake Victoria, the world’s second largest fresh water lake
in terms of surface area (239 000 km2), and Lake Volta, the
world’s largest reservoir in terms of surface area (8502 km2).
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Fig. 2. Global Runoff Data Centre (GRDC) stations and reser-
voirs/lakes included in the SWAT-SSA model setup and calibration
(lengths of GRDC discharge data series are marked with missing
values excluded).

The major lakes and reservoirs in SSA were defined in our
SWAT-SSA model (Fig. 2). Locations and storage capaci-
ties of these water impoundments were obtained from the
Global Lakes and Wetlands Database (GLWD) (Lehner and
Döll, 2004). Due to signal leakage, mass variations in these
lakes and reservoirs may have a significant contribution to
GRACE TWS observations (e.g., Becker et al., 2010), even if
their size is much less than the GRACE footprint (∼ 450 km,
i.e., 200 000 km2 in area). We compared the simulated water
level change data and water level change data obtained with
satellite altimetry (Cŕetaux et al., 2011, seehttp://www.legos.
obs-mip.fr/en/soa/hydrologie/hydroweb/) and found that it
is difficult to adequately simulate water storage variations
in these lakes and reservoirs because of lack of detailed
bathymetry and reservoir operation data. In this study, an al-
ternative modelling strategy was taken, i.e., lake and reser-
voir mass correction was applied to GRACE TWS data ac-
cording to height and volume variations of the 22 largest
lakes and reservoirs in SSA (Table 3) from satellite altime-
try data analysis for a fair comparison between GRACE and
hydrologic model. Accordingly, simulated water mass varia-
tions in lakes and reservoirs were excluded from the model-
based TWS variation calculation.
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Table 3.Lakes/reservoirs to which mass corrections in GRACE data processing were applied.

1. Albert 6. Kainji 11. Malawi 17. Tana 22. Volta
2. Bangweulu 7. Kariba 12. Mweru 18. Tanganyika
3. Buyo 8. KhashmGirba 13. Nasser 19. Chad
4. CahoraBassa 9. Kivu 15. Roseires 20. Turkana
5. Edward 10. Kyoga 16. Rukwa 21. Victoria

Table 4.SWAT hydrologic calibration parameters.

Parameter Level Possible range

CN2: SCS curve number HRU/subbasin 35∼ 90
ESCO: Soil evaporation compensation factor Basin 0∼ 1
GW DELAY: Groundwater delay coefficient [days] HRU/subbasin 0∼ 100
GW REVAP: Groundwater revap coefficient HRU/subbasin 0.02∼ 0.2
ALPHA BF: Baseflow alpha factor [days] HRU/subbasin 0∼ 1
REVAPMN: Threshold depth to water in the shallow aquifer for

“revap” to occur [mm]
HRU/subbasin 0∼ 500

GWQMN: Threshold depth to water in the shallow aquifer
required for groundwater flow to occur [mm H2O]

HRU/subbasin 0∼ 1000

SURLAG: Surface runoff lag coefficient Subbasin 1∼ 10
SOLAWCXa: Calibration factor for soil water available capacity Soil layer/subbasin 0.5∼ 2
SOLD Xa: Calibration factor for depth from soil surface to

bottom of layer
Soil layer/sbubasin 1∼ 2

SOLK Xa: Calibration factor for saturated hydraulic
conductivity

Soil layer/sbubasin 0.5∼ 1.5

a These factors are defined for model calibration purposes only. Actual values of these parameters used in simulation are equal to their
default values multiplied by the calibration factors.

3 GRACE data

GRACE data used in this study were obtained from
CNES-GRGS (Centre National d’Etudes Spatiales-Groupe
de Recherches de Géod́esie Spatiale), RL2 product (Bru-
insma et al., 2010). The data are provided as spherical har-
monics as 10 day means. The Stokes coefficients are trun-
cated at degree 50 to remove high frequency noise. No fur-
ther filtering is required for these solutions. Stokes coeffi-
cients were recombined following Wahr et al. (1998) and pro-
jected on a 0.5°latitude/longitude grid. In terms of time frame
of the data, we used 232 10-d periods from 29 July 2002
through 22 April 2009 (with missing values from 26 Novem-
ber 2002 to 23 February 2003, 25 May 2003 to 3 July 2003,
and 20 January 2004 to 29 January 2004).

The GRACE CSR RL04 product (Center for Space Re-
search, University of Texas at Austin, monthly timescales,
Bettadpur, 2007) was also used to estimate GRACE errors
at a 10-day timescale. CSR data were destriped according
to Swenson and Wahr (2006). For error calculation, both
GRGS and CSR GRACE products were truncated at degree
30 and smoothed using a 300-km Gaussian smoother to eval-
uate large-scale errors. Error is computed at a monthly time
step as the difference between CSR and GRGS data and re-
sampled as 10-day errors.

In the mass correction, the impact of 22 lakes and reser-
voirs were first forward modelled at GRACE GRGS resolu-
tion, prior to subtraction from GRACE. Lake volume vari-
ations were distributed on a grid and projected on spherical
harmonics. They were then recombined up to degree 50 on a
0.5 degree grid.

4 Total water storage variation calculation in SWAT

SWAT was developed to provide continuous simulations of
the basin hydrology at a daily timescale. For each day of
the simulation, the model first computes the water yields
on land and then routes the water through the defined river
channel network. In the land phase simulation, SWAT uses
the Soil Conservation Service (SCS) curve number method
(SCS 1972) to estimate the volume of overland flow and
storage routing techniques to simulate percolation and lat-
eral movement of water through the soil profile. The water
leaving the base of the soil profile does not enter aquifers im-
mediately, but is time lagged based on transport through the
vadose zone. The vadose zone is defined in SWAT as the un-
saturated zone beneath the base of the soil profile and above
the groundwater table. An exponential decay weighting func-
tion, proposed by Venetis (1969), was used to account for
the time delay of water drainage in the vadose zone and to
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Figure 3 The Pareto fronts in objective space 828 
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Fig. 3.The Pareto fronts in objective space.
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Figure 4 Model fit in river discharge simulations 831 

 832 

 833 

  834 

Fig. 4.Model fit in river discharge simulations.
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Table 5.Nash-Sutcliffe efficiency coefficients for calibrated SWAT models for simulation of variations in TWS.

Calibration Validation

Mean Max. Min. Mean Max. Min.

West Africa 0.91 0.92 0.89 0.91 0.92 0.90
Volta 0.86 0.90 0.75 0.91 0.94 0.82
Chad 0.81 0.83 0.79 0.66 0.73 0.55
Nile 0.86 0.87 0.84 0.75 0.78 0.72
Horn of Africa 0.41 0.45 0.40 0.31 0.34 0.25
Congo 0.19 0.34 −0.44 0.12 0.30 −0.80
Eastern Africa 0.85 0.91 0.71 0.80 0.87 0.67
Zambezi 0.91 0.92 0.90 0.91 0.93 0.89
South Africa 0.46 0.54 0.40 0.80 0.83 0.75
Madagascar 0.81 0.85 0.76 0.82 0.84 0.79

predict effective recharge into shallow aquifers (Sangrey et
al., 1984). Variation in groundwater flow to rivers is linearly
related to changes in water-table elevation.

SWAT simulates several water storage components that
make up total water storage to compare with GRACE TWS.
These storages include:

1. Overland water storage (V1), including river chan-
nels, bank storage and canopy storage. Due to the
mass correction in GRACE data processing, the wa-
ter storage variations in lakes/reservoirs were not taken
into account.

2. Storages (V2 +V3) for lagged surface runoff and lateral
flow. The two storages are defined in SWAT for esti-
mating the amount of overland and lateral flow reaching
river channels on a daily time step. SWAT allows for de-
layed release of overland flow and lateral flow yielded
in river basins with time of concentration greater than
one day.

3. Soil profile (V4).

4. Vadose zone (V5). Water storage in the vadose zone is
typically not considered as a storage in SWAT water
balance analysis because the Venetis’ exponential decay
weighting function (1969) does not alter the quantity of
water from soil into aquifers. However, the time delay
for water to move through the vadose zone results in
variations in water storage and needs to be addressed in
TWS variation calculations (Milzow et al., 2011).

5. Groundwater (V6). SWAT simulates an unconfined shal-
low aquifer and a confined deep aquifer in each sub-
basin. Water storage in shallow aquifers may contribute
to flow in the main river channels or be re-evaporated
into the soil. By contrast, there is no simulated outlet for
water in deep aquifers except pumpage. “Water that en-
ters the deep aquifer is assumed to contribute to stream-
flow somewhere outside of the watershed” (Neitsch et

al., 2005). While this assumption may hold in studies
for small river basins, it is no longer valid at a continen-
tal scale. Due to the accumulation of water percolated
from shallow aquifer, an upward trend in water storage
in deep aquifers would be found, which is unrealistic. To
circumvent this problem, the deep aquifer was excluded
from the simulations and the calculation of TWS by set-
ting the percolation rate to the deep aquifer to zero.

For each subbasin, the model-based TWS for each 10-day
period was calculated as:

TWSt = V1,t + V2,t + V3,t + V4,t + V5,t + V6,t

where t is the index for the 10-day period. The series of
SWAT subbasin-wide TWS anomalies (TWSVt ) was com-
puted by differencing the TWS for each 10-day period TWSt

and the mean of the TWS over the entire GRACE data period:

TWSVt = TWSt − TWS

where TWS is the mean of the TWSt over the GRACE
data period, or was calculated by taking the average of 10-
d TWSt ’s during July 2002–April 2009.

5 Calibration approach

Calibration and evaluation of the SWAT-SSA model in this
study was carried out using a multi-criteria framework, sim-
ilar to the studies by Werth and Güntner (2010). The multi-
criteria approach extends the traditional calibration approach
by casting the calibration into a multi-objective optimisa-
tion problem, and for independent data, allows evaluation
of model performance against more than one objective to
improve model robustness and predictability (Gupta et al.,
1998). The solution to the multi-criteria optimisation pro-
gramme consists of the non-dominated calibration parame-
ter sets, which are optimal in a Pareto efficiency sense. The
trade-off between model fits evaluated by different criteria
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Fig. 5. Observed and zonally averaged simulated TWS varia-
tions for ten sub-continental regions (TWS-total water storage; CI-
confidence).

reflects the minimum parameter uncertainty (Vrugt et al.,
2003) caused by errors in the input and measured data as
well as by the model structure.

For the calibration of the SWAT-SSA model, two objective
functions were defined. Their definitions and calculations
are explained in detail below. The multi-objective optimisa-
tion problems defined in the multi-criteria calibration of the
SWAT-SSA models were solved using the Non-dominated
Sorting Genetic Algorithm II (NSGA-II, Deb et al., 2002),
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Figure 5 Observed and zonally averaged simulated TWS variations for ten sub-continental 845 

regions (TWS-total water storage; CI-confidence)  846 

Fig. 5.Continued.

a population-based heuristic evolutionary optimisation tech-
nique with a proven track record of success in solving many
large-scale optimisation problems. The population sizes cho-
sen in the optimisations varied from 150 to 300, and the opti-
misations lasted for 50∼ 100 generations until no significant
improvements in the solution were observed.

5.1 Comparison of model-based and GRACE-derived
TWS variations

As GRACE provides a filtered image of reality, the mod-
elled storage variations from SWAT were first converted to
GRACE resolution to provide storage values at the same
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(a) Best-fit                                                        (b) Least-fit 847 
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(c) Agro-climatic zonation                                       (d) Cropland intensity 849 

    850 
Figure 6. Spatial patterns of SWAT model fits in simulations of total water storage variations in 851 

Sub-Saharan Africa (country boundaries are shown).   852 
Fig. 6. Spatial patterns of SWAT model fits in simulations of total water storage variations in Sub-Saharan Africa (country boundaries are
shown).

spatial scales for comparison. This mathematical process in-
volves projecting SWAT modelled spatial fields to Spher-
ical Harmonics (SH) up to degree 50 (in this study, SH
transformation was conducted using SHTOOLS,http://www.
ipgp.fr/∼wieczor/SHTOOLS/SHTOOLS.html) in which the
SWAT-based basin-wide TWS variations for each 10-day pe-
riod were first disaggregated into a 0.5 by 0.5 degree grid
prior to the transformation. In order to allow for a compari-
son between GRACE- and SWAT-based TWS variations for
sub-continental regions, simulated variations in TWS by the
Noah land surface model (Ek et al., 2003) in NASA’s Global
Land Data Assimilation System (GLDAS) (Rodell et al.,
2004) were used as a priori information to fill areas outside
of the SSA sub-region of interest in the SH transformation.

Agreement between GRACE-derived and model-based
TWS variations was evaluated using a weighted total square

error (WTSE) function:

WTSE=

T∑
t=1

I∑
i=1

J∑
j

Is × wi,j,t

×(TWSVi,j,t,SWAT − TWSVi,j,t,GRACE)
2 (1)

where TWSVi,j,t,SWAT and TWSVi,j,t,GRACE are SWAT- and
GRACE-based TWS variations for 10-day periodt and grid
cell (i,j), respectively.Is is an indicator function.Is = 1 if
the grid cell is located within the study region; otherwise,
Is = 0, wi,j,t is the weight, an inverse of standard error of
GRACE-based TWS variations TWSVi,j,t,GRACE.

Finally, following the convention in hydrologic model
calibration, available GRACE data were divided into two
groups: the first 112 10-day periods (29 July 2002–
December 2005) were used for calibration and the data for
remaining 120 10-day periods were reserved for validation.
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Table 6.Temporal variability of zonally averaged component-wise water storage variations (%).

West Horn of Eastern South
Africa Volta Chad Nile Africa Congo Africa Zambezi Africa Madagascar

Soil
Mean 55.2 11.5 31.5 37.9 44.8 10.0 28.8 18.9 20.8 9.1
Max 61.1 16.2 58.5 48.9 48.8 31.0 38.9 21.4 38.5 13.8
Min 50.3 8.5 20.8 31.4 37.0 5.3 17.1 17.4 8.6 6.8

Vadose
Mean 5.2 46.7 26.9 4.5 9.8 37.1 19.4 16.8 13.9 42.6
Max 9.5 55.0 34.2 11.6 13.1 51.5 31.0 19.8 40.8 59.2
Min 2.7 8.1 3.0 0.0 6.0 0.24 0.0 12.5 3.1 21.6

Groundwater
Mean 1.6 15.3 6.2 13.0 11.3 8.4 5.1 8.4 25.3 2.9
Max 3.6 56.4 24.8 24.5 16.2 59.1 25.5 16.2 41.5 8.6
Min 0.42 5.3 2.0 6.7 8.1 0.01 2.7 6.6 11.5 0.08

Overland water
Mean 0.03 0.04 0.01 0.4 0.007 0.10 0.004 0.010 0.03 0.0004
Max 0.05 0.10 0.02 0.58 0.009 0.30 0.010 0.020 0.06 0.0010
Min 0.02 0.01 0.01 0.25 0.006 0.01 0.002 0.005 0.01 0.0002

Surface water lag
Mean 0.003 0.20 0.07 0.03 0.01 0.06 0.01 0.22 0.31 0.02
Max 0.005 1.23 0.52 0.14 0.01 0.32 0.02 0.59 0.83 0.03
Min 0.002 0.001 0.003 0.005 0.01 0.03 0.002 0.04 0.02 0.01

Lateral flow lag
Mean 0.0007 0.0001 0.00006 0.004 0.0014 0.010 0.005 0.00042 0.0009 0.011
Max 0.0010 0.0002 0.0001 0.04 0.0015 0.020 0.030 0.0010 0.0015 0.030
Min 0.0004 0.00006 0.00004 0.001 0.0013 0.001 0.001 0.00036 0.0005 0.006

5.2 Criterion/objective function for evaluating goodness
of model fit in runoff field simulation

Observed monthly river discharge data from 187 discharge
stations in SSA (Fig. 2) were used for this calibration study.
The data were obtained from Global Runoff Data Centre
(GRDC), a primary source of information for global river
discharge to support large-scale hydrologic studies (date of
data retrieval: 30 September 2009). The starting and ending
dates of the discharge series for these stations vary by station.
The earliest discharge data date back to 1900 and were ob-
tained from the station near Khartoum on the Blue Nile River.
The most recent data are from 2001 and several stations on
the Orange River, the Great Fish River and the Limpopo
River in South Africa. For the majority of stations in SSA,
river discharge data are available up to 1980s and early
1990s. The different time frames among the GRDC river
discharge data, GRACE data (2002–2009), and GPCP 1-DD
precipitation data (1997–2009) pose difficulty for model cal-
ibration. In this study, we focused on evaluating the per-
formance of SWAT for modelling TWS variability: SWAT
was run for 2002–2009 (with five additional years 1997–
2001 as the spin-up period) and, following the approach by
Werth and G̈untner (2010), simulated and observed monthly
river discharge rates in two time frames were compared on a
multi-year average basis. The fit of the SWAT model at each
GRDC station was measured using the Nash-Sutcliffe Effi-
ciency (NSE) coefficient (Nash and Sutcliffe, 1970), which

is defined as

NSE= 1−

12∑
t=1

(Qt,obs− Qt,sim)2

12∑
t=1

(Qt,obs− Q̄t,obs)2

(2)

whereQt,obsandQt,sim are the multi-year averaged monthly
discharges calculated using the simulated and available ob-
served discharges (m3 s−1), respectively.Q̄t,obs is the mean
of Qt,obs (m3 s−1). The NSE coefficient can range from−∞

to 1, where 1 indicates a perfect model fit.
The GRDC station network is relatively dense in West

Africa, but limited in other regions (Fig. 2). This highlights
the benefit of applying GRACE data to support hydrologic
simulations in SSA. The NSE values for all GRDC stations
in a sub-regional model were weighted by length of observed
monthly river discharge series:

WNSE=

∑
i

wi NSEi (3)

where NSEi is NSE coefficient at GRDC stationi, andwi is
the weighting factor proportional to the length of the monthly
river discharge data time series at that station (

∑
i

wi = 1).

The weighted NSE (WNSE) serves as the criterion for eval-
uating performance of SWAT in simulating river discharge.
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Fig. 7. Zonally averaged water variations in soil, vadose zone and
groundwater storages (TWS-total water storage).

5.3 Calibration parameters

The hydrologic processes and watershed properties in SWAT
are characterised by many parameters. A list of SWAT pa-
rameters selected for calibration, together with their lower
and upper bounds of adjustable ranges, are shown in Table 4.
This list was determined from literature review, numerical
sensitivity analysis (Morris, 1991), and according to results
from several test runs of the calibration programmes.
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Figure 7 Zonally averaged water variations in soil, vadose zone, and groundwater storages 863 

(TWS-total water storage)  864 

Fig. 7.Continued.

In these SWAT calibration parameters, SCS curve num-
ber is a key parameter for surface runoff estimation. It is
defined to characterise the potential maximum soil mois-
ture retention capacity. A low value indicates low runoff,
but high infiltration potential. Surface runoff lag coefficient
(SURLAG) determines how much total available runoff en-
ters into a river reach on a given day and is a sensitivity
parameter for simulating river discharge hydrographs. Soil
evaporation compensation factor (ESCO) is defined to spec-
ify the depth distribution used to meet soil evaporative de-
mand. As the value of ESCO decreases, more water can be
evaporated from deeper soil layers. SOLAWC, SOL K, and
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Fig. 8. Estimates of SWAT calibration parameters obtained from
mutli-criteria calibration (abbreviations of the land cover type:
FOCD – Closed deciduous forest; FORC – Closed evergreen low-
land forest; FORD – Degraded evergreen lowland forest; FORS
– Submontane forest; GRAS – Closed grassland; GRSH – Open
grassland with sparse shrubs; ODSH – Open deciduous shrubland;
OGRA – Open grassland; SAVA – Mosaic Forest/Savanna; SGRA –
Sparse grassland; SHRU – Deciduous shrubland with sparse trees;
WOOD – Deciduous woodland).
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Figure 8 Estimates of SWAT calibration parameters obtained from mutli-criteria calibration 875 

(abbreviations of the land cover type: FOCD- Closed deciduous forest; FORC- Closed evergreen 876 

lowland forest; FORD- Degraded evergreen lowland forest; FORS- Submontane forest; GRAS- 877 

Closed grassland; GRSH- Open grassland with sparse shrubs; ODSH- Open deciduous shrubland; 878 

OGRA- Open grassland; SAVA- Mosaic Forest / Savanna; SGRA- Sparse grassland; SHRU- 879 

Deciduous shrubland with sparse trees; WOOD- Deciduous woodland) 880 

Fig. 8.Continued.

SOL D are soil available water capacity, saturated conduc-
tivity and the soil layer depth, respectively. All three soil at-
tributes are highly uncertain. Values of the first two param-
eters were derived using pedotransfer functions; no reliable
information about the actual depth of the soil layer in Africa
is available from HWSD, only a reference value (in most
cases 1 m) was assigned. GWDELAY (groundwater delay
coefficient) characterising the delay time for recharge into
the aquifer, is a single controlling parameter for determining
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the water storage variation in the vadose zone. The remain-
ing four parameters in the table, GWREVAP (groundwater
revap coefficient), ALPHABF (baseflow alpha factor), RE-
VAPMN (threshold depth of water in the shallow aquifer for
“revap” to occur) and GWQMN (threshold depth of water in
the shallow aquifer required for groundwater flow to occur)
control the behaviour of shallow aquifers.

The ten SWAT sub-regional models were calibrated with
the parameters shown in Table 4. The model for each sub-
region was calibrated independently, but within a region,
the same percentage changes were made for those parame-
ters which have spatially varying values (or parameters other
than SURLAG and ESCO), except for the SCS curve number
(CN2), based on spatial fields of their initial estimates. The
CN2 values are correlated with land cover and soil perme-
ability. In this study, within a sub-region the CN2 parameters
were grouped by land cover, and the CN2 values for major
land covers/uses were considered as independent calibration
parameters.

6 Results

The Pareto fronts in the two-dimensional objective space
found via multi-criteria calibration for all ten SSA sub-
regions are shown in Fig. 3. Paired values of weighted
root-mean-square-error (RMSE) and weighted NSE coeffi-
cients are plotted on horizontal and vertical axes, respectively
(weighted RMSE is a monotonic function of weighted TSE).
A model with a perfect fit to GRACE data and river discharge
data would have a weighted RMSE of 0 and a weighted NSE
coefficient of 1. Thus, the Pareto front curves are convex to-
wards the point (0, 1), reflecting tradeoffs between the ability
to fully describe discharge or TWS variations.

With regard to performance of calibrated models in river
discharge simulation, the highest values of weighted NSE co-
efficients obtained vary from−2.55 to 0.66 and are negative
for five out of the ten sub-region models (West Africa, Nile,
Congo, Zambezi and Madagascar). This measure of good-
ness of fit statistic is also sensitive to different solutions of
parameter sets in Pareto fronts. The deterioration of its value
is greater than two in models for all sub-regions other than
West Africa, Nile and Zambezi when the parameter set in the
Pareto frontier that most closely matches the simulation of
GRACE TWS variations was used. The NSE model coeffi-
cients for each individual GRDC gauging station are shown
in Fig. 4. When the “best-fit” solutions for river discharge
simulation were taken, 20 % of the stations have NSEs≥ 0.7,
43 %≥ 0.4 and the NSEs for 64 % of the GRDC stations are
positive. These percentages decrease from 20 to 6 %, 43 to
17 % and 64 to 30 % if the models are run with the “least-fit”
solutions for river discharge simulation.

More satisfactory model fits were achieved in simulation
of TWS variations after the calibration of the SWAT model.
The ensembles of time series of zonally averaged simulated

TWS variations over the 10 sub-regions and associated with
Pareto optimal solutions found in multi-criteria calibration
are plotted in Fig. 5, together with the time series of zonally
averaged GRACE- based mean TWS variations and the re-
lated one-sigma (68.7 %) confidence interval (CI). The NSE
coefficients for the time series of model-based TWS varia-
tions with respect to the GRACE- based mean TWS varia-
tions were also calculated and summarised, for calibration
and validation periods, respectively (Table 5). Overall, sim-
ulated and GRACE-based zonally averaged time series are
in good agreement in sub-regions of West Africa, Volta,
Chad, Nile, Eastern African, Zambezi and Madagascar dur-
ing both calibration and validation periods. The means of the
NSE coefficients for these sub-regional models range from
0.66 to 0.91. Larger discrepancies were found in the Congo
and Horn of Africa. In the simulation of temporal variations
of TWS for these two sub-regions, the model still captures
the general trends/phase changes of TWS variations, but the
mismatch in amplitude is greater. For the Southern African
model, the model fit was poorer during the calibration pe-
riod; however, the model performs much better during the
validation period.

The NSE coefficients calculated on a gridded basis are
shown in Fig. 6a and b. The “best-fit” and “least-fit” solu-
tions were determined according to model fits with respect
to GRACE TWS variations. Figure 6c and d show the agro-
climatic zonation (derived from FAO Agroecological Zones
crafted by HarvestChoice, Z. Guo, personal communication,
2011), and the density of cropland (fraction of cropland area
in 5 min × 5 min grid, Ramankutty et al., 2008) in SSA. Gen-
erally, the model performs well in simulating TWS varia-
tions in semiarid and sub-humid areas, which encompass
most cropland in SSA. The largest discrepancies in simulated
TWS variations (NSE coefficients≤ 0) occurred in arid ar-
eas, where water storage amplitude is lower or equivalent to
GRACE error (the Sahara, Somalia, western Ethiopia, north-
west Kenya, south Namibia and most of Southern Africa) and
the equatorial humid area (notably in central Democratic Re-
public of the Congo).

GRACE TWS data integrate water mass variations from
all storage components. Sometimes, interest is focused on es-
timating water mass variations in certain storage components
(e.g., groundwater; Rodell et al., 2009; Tiwari et al., 2009).
Temporal variability of zonally aggregated water mass in six
water storages parameterised in the SWAT model are charac-
terised by calculating ratios between variances of these stor-
age variablesσ 2

Vi
( i = 1, · · · ,6) and variance of model-based

total water storage variationσ 2
VTotal

(in unfiltered space), or

σ 2
Vi

/
σ 2

VTotal
. Means and ranges of calculated normalised vari-

ances for each storage variable and each sub-region are listed
in Table 6 (note that the water mass variations in six stor-

ages are not independent; thus,σ 2
VTotal

maynotequal
6∑

i=1
σ 2

Vi
).

These statistics show that the three water storage components
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that have largest temporal variability, thus, contributing most
to TWS, are soil, vadose zone and groundwater storage. By
contrast, contributions from overland flow, surface runoff and
lateral flow lags are trivial. Zonally aggregated time series of
soil water, vadose zone water and groundwater storage vari-
ations obtained from the calibrated SWAT models are shown
in Fig. 7. Systematic phase differences exist among the time
series for the three storage variables: in each annual cycle
when the rainy season begins the soil moisture is first replen-
ished and peaks, followed by vadose zone water and then
groundwater.

The statistics in Table 6 and graphs in Fig. 7 also indicate
that there could be even larger uncertainties in estimation of
component-wise water storages than what is seen in TWS es-
timation. For example, the model gives divergent estimates
for water storage variations in vadose zone and groundwater
in Eastern Africa when the model was run with parameter
sets across the Pareto frontier. The estimated time series for
water storage variations in the vadose zone and groundwa-
ter fall into two groups: one group has large variations in the
vadose zone water storage, but relatively smaller variations
in groundwater storage; in another group, vadose zone water
storage variations are almost zero and variations in ground-
water storage are much larger. Figure 8 shows the Pareto
fronts in parameter space with normalised parameter values
in [0, 1] intervals (zero values represent the lower bounds of
the adjustable ranges of the parameters and one corresponds
to the upper bounds). The disparate estimates for vadose zone
and groundwater storage variations can be explained by the
dichotomy in the estimated values of GWDELAY. As the
value of GWDELAY approaches zero, water exiting the bot-
tom of the soil profile can enter aquifers immediately caus-
ing no variation in vadose water storage and larger variations
in groundwater storage, with the opposite for large values
for GW DELAY. Similar divergent estimates in vadose zone
water and groundwater storage variations caused by different
GW DELAY estimates were also found in the Congo model.
For Chad, Nile and Southern Africa, there are large uncer-
tainties in estimating soil water storages, which is most likely
related to divergent estimates of SOLAWC X.

7 Discussion and conclusions

The study presented in this paper concerns calibra-
tion/evaluation of a semi-distributed model based on SWAT
code (SWAT-SSA) for regional-scale hydrologic simulation
in Sub-Saharan African countries. The SWAT-SSA models
were calibrated and evaluated in a multi-criteria framework
to both river discharge and GRACE TWS data, but with more
focus on assessing the model’s capacity for simulating TWS
variability using GRACE data. In spite of uncertainty aris-
ing from the tradeoff in optimising model parameters with
respect to two model fitting criteria and in estimation of stor-
age variations contributed by different storage components,

the study showed that the calibrated SWAT-SSA model per-
forms well in simulating TWS variations in semi-arid and
semi-humid areas, where agriculture in SSA is concentrated
and, therefore, is capable of acting as an effective modelling
tool for agricultural water management in SSA.

Any model calibration and validation exercise is subject
to certain limitations. A major limitation in this study origi-
nated from use of multi-year average monthly river discharge
data for a time frame (1900–2001) different from that in
which the models were actually run (2002–2009) as a re-
sult of limited availability and accessibility to recent stream
flow data in Sub-Saharan countries. Therefore, it is difficult
to evaluate the model’s adequacy in simulating the surface
water system. Climate and land use change may alter the
flow regimes of rivers (e.g., Amogu et al., 2010) and poten-
tially bias the calibration of river discharge and estimation
of the contribution of water mass variations in river systems
to TWS variations. Furthermore, an interesting question of-
ten raised in model calibration/evaluation is what value is
brought to model calibration and evaluation by use of ad-
ditional dataset(s). The limitation with river discharge data
makes it difficult to answer this question. However, the out-
come of the SWAT model calibration and validation in this
study tends to suggest that use of GRACE data may only
provide limited additional constraints to reduce parametric
uncertainties of the model because the NSEs shown in Fig. 3
and Table 5 indicate that there might be stronger equifinal-
ity (Beven and Binley, 1992) in the TWS simulation than in
discharge simulation. On the other hand, it is apparent that
GRACE data are of great value in that they provide valuable
information and unprecedented opportunity to validate and
evaluate the model’s capacity to simulate spatio-temporal
variability in TWS.

Finally, there is less agreement between model- and
GRACE-based TWS variations in arid and equatorial hu-
mid areas. A few possible reasons for the larger discrepan-
cies include: firstly, uncertainties associated with GRACE
TWS variations themselves. Noticeable disagreement be-
tween model- and GRACE-based TWS variations in arid
regions were also reported by Ngo-Duc et al. (2007) in a
global-scale model validation study, who attributed the dis-
agreements in arid areas to weak GRACE signals and result-
ing larger errors in GRACE TWS variations. Secondly, er-
rors in climatic forcing data, especially in precipitation data
may be important. Due to lack of ground-based observations
in precipitation, regional or global scale hydrologic simula-
tions typically rely on use of precipitation estimates from dif-
ferent satellite-based or meteorological reanalysis data prod-
ucts. Uncertainty associated with these precipitation datasets
is often a principle source of uncertainty for hydrologic sim-
ulation (e.g., Fiedler and D̈oll, 2007). Thirdly, inadequacy of
SWAT parameterisation or algorithms in simulating hydrol-
ogy in arid and humid areas may also help explain the dis-
crepancy. Future work will be required to identify physical
reasons for model misfits and for model enhancement.
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