51 research outputs found

    Early inflammatory cytokine expression in cerebrospinal fluid of patients with spontaneous intraventricular hemorrhage

    Get PDF
    We investigated cerebrospinal fluid (CSF) expression of inflammatory cytokines and their relationship with spontaneous intracerebral and intraventricular hemorrhage (ICH, IVH) and perihematomal edema (PHE) volumes in patients with acute IVH. Twenty-eight adults with IVH requiring external ventricular drainage for obstructive hydrocephalus had cerebrospinal fluid (CSF) collected for up to 10 days and had levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-8, IL-10, tumor necrosis factor-α (TNFα), and C-C motif chemokine ligand CCL2 measured using enzyme-linked immunosorbent assay. Median [IQR] ICH and IVH volumes at baseline (T0) were 19.8 [5.8–48.8] and 14.3 [5.3–38] mL respectively. Mean levels of IL-1β, IL-6, IL-10, TNF-α, and CCL2 peaked early compared to day 9–10 (p < 0.05) and decreased across subsequent time periods. Levels of IL-1β, IL-6, IL-8, IL-10, and CCL2 had positive correlations with IVH volume at days 3–8 whereas positive correlations with ICH volume occurred earlier at day 1–2. Significant correlations were found with PHE volume for IL-6, IL-10 and CCL2 at day 1–2 and with relative PHE at days 7–8 or 9–10 for IL-1β, IL-6, IL-8, and IL-10. Time trends of CSF cytokines support experimental data suggesting association of cerebral inflammatory responses with ICH/IVH severity. Pro-inflammatory markers are potential targets for injury reduction

    Intracranial Vertebrobasilar Artery Dissection Associated with Postpartum Angiopathy

    Get PDF
    Background. Cervicocephalic arterial dissection (CCAD) is rare in the postpartum period. To our knowledge this is the first reported case of postpartum angiopathy (PPA) presenting with ischemic stroke due to intracranial arterial dissection. Case. A 41-year-old woman presented with blurred vision, headache, and generalized seizures 5 days after delivering twins. She was treated with magnesium for eclampsia. MRI identified multiple posterior circulation infarcts. Angiography identified a complex dissection extending from both intradural vertebral arteries, through the basilar artery, and into both posterior cerebral arteries. Multiple segments of arterial dilatation and narrowing consistent with PPA were present. Xenon enhanced CT (Xe-CT) showed reduced regional cerebral blood flow that is improved with elevation in blood pressure. Conclusion. Intracranial vertebrobasilar dissection causing stroke is a rare complication of pregnancy. Eclampsia and PPA may play a role in its pathogenesis. Blood pressure management may be tailored using quantitative blood flow studies, such as Xe-CT

    TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage

    Get PDF
    Intracerebral hemorrhage (ICH) is a devastating form of stroke that results from the rupture of a blood vessel in the brain, leading to a mass of blood within the brain parenchyma. The injury causes a rapid inflammatory reaction that includes activation of the tissue-resident microglia and recruitment of blood-derived macrophages and other leukocytes. In this work, we investigated the specific responses of microglia following ICH with the aim of identifying pathways that may aid in recovery after brain injury. We used longitudinal transcriptional profiling of microglia in a murine model to determine the phenotype of microglia during the acute and resolution phases of ICH in vivo and found increases in TGF-β1 pathway activation during the resolution phase. We then confirmed that TGF-β1 treatment modulated inflammatory profiles of microglia in vitro. Moreover, TGF-β1 treatment following ICH decreased microglial Il6 gene expression in vivo and improved functional outcomes in the murine model. Finally, we observed that patients with early increases in plasma TGF-β1 concentrations had better outcomes 90 days after ICH, confirming the role of TGF-β1 in functional recovery from ICH. Taken together, our data show that TGF-β1 modulates microglia-mediated neuroinflammation after ICH and promotes functional recovery, suggesting that TGF-β1 may be a therapeutic target for acute brain injury

    Early Inflammatory Cytokine Expression in Cerebrospinal Fluid of Patients with Spontaneous Intraventricular Hemorrhage

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-07-13, pub-electronic 2021-07-30Publication status: PublishedWe investigated cerebrospinal fluid (CSF) expression of inflammatory cytokines and their relationship with spontaneous intracerebral and intraventricular hemorrhage (ICH, IVH) and perihematomal edema (PHE) volumes in patients with acute IVH. Twenty-eight adults with IVH requiring external ventricular drainage for obstructive hydrocephalus had cerebrospinal fluid (CSF) collected for up to 10 days and had levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-8, IL-10, tumor necrosis factor-α (TNFα), and C-C motif chemokine ligand CCL2 measured using enzyme-linked immunosorbent assay. Median [IQR] ICH and IVH volumes at baseline (T0) were 19.8 [5.8–48.8] and 14.3 [5.3–38] mL respectively. Mean levels of IL-1β, IL-6, IL-10, TNF-α, and CCL2 peaked early compared to day 9–10 (p 0.05) and decreased across subsequent time periods. Levels of IL-1β, IL-6, IL-8, IL-10, and CCL2 had positive correlations with IVH volume at days 3–8 whereas positive correlations with ICH volume occurred earlier at day 1–2. Significant correlations were found with PHE volume for IL-6, IL-10 and CCL2 at day 1–2 and with relative PHE at days 7–8 or 9–10 for IL-1β, IL-6, IL-8, and IL-10. Time trends of CSF cytokines support experimental data suggesting association of cerebral inflammatory responses with ICH/IVH severity. Pro-inflammatory markers are potential targets for injury reduction

    Radiomic markers of intracerebral hemorrhage expansion on non-contrast CT: independent validation and comparison with visual markers

    Get PDF
    ObjectiveTo devise and validate radiomic signatures of impending hematoma expansion (HE) based on admission non-contrast head computed tomography (CT) of patients with intracerebral hemorrhage (ICH).MethodsUtilizing a large multicentric clinical trial dataset of hypertensive patients with spontaneous supratentorial ICH, we developed signatures predictive of HE in a discovery cohort (n = 449) and confirmed their performance in an independent validation cohort (n = 448). In addition to n = 1,130 radiomic features, n = 6 clinical variables associated with HE, n = 8 previously defined visual markers of HE, the BAT score, and combinations thereof served as candidate variable sets for signatures. The area under the receiver operating characteristic curve (AUC) quantified signatures’ performance.ResultsA signature combining select radiomic features and clinical variables attained the highest AUC (95% confidence interval) of 0.67 (0.61–0.72) and 0.64 (0.59–0.70) in the discovery and independent validation cohort, respectively, significantly outperforming the clinical (pdiscovery = 0.02, pvalidation = 0.01) and visual signature (pdiscovery = 0.03, pvalidation = 0.01) as well as the BAT score (pdiscovery &lt; 0.001, pvalidation &lt; 0.001). Adding visual markers to radiomic features failed to improve prediction performance. All signatures were significantly (p &lt; 0.001) correlated with functional outcome at 3-months, underlining their prognostic relevance.ConclusionRadiomic features of ICH on admission non-contrast head CT can predict impending HE with stable generalizability; and combining radiomic with clinical predictors yielded the highest predictive value. By enabling selective anti-expansion treatment of patients at elevated risk of HE in future clinical trials, the proposed markers may increase therapeutic efficacy, and ultimately improve outcomes

    Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation

    Get PDF
    Previous studies have shown that the translation level of in vitro transcribed messenger RNA (mRNA) is enhanced when its uridines are replaced with pseudouridines; however, the reason for this enhancement has not been identified. Here, we demonstrate that in vitro transcripts containing uridine activate RNA-dependent protein kinase (PKR), which then phosphorylates translation initiation factor 2-alpha (eIF-2α), and inhibits translation. In contrast, in vitro transcribed mRNAs containing pseudouridine activate PKR to a lesser degree, and translation of pseudouridine-containing mRNAs is not repressed. RNA pull-down assays demonstrate that mRNA containing uridine is bound by PKR more efficiently than mRNA with pseudouridine. Finally, the role of PKR is validated by showing that pseudouridine- and uridine-containing RNAs were translated equally in PKR knockout cells. These results indicate that the enhanced translation of mRNAs containing pseudouridine, compared to those containing uridine, is mediated by decreased activation of PKR

    New mechanistic insights, novel treatment paradigms, and clinical progress in cerebrovascular diseases

    Get PDF
    The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed. Moreover, translationally relevant aspects are increasingly recognized in basic science studies, which is believed to increase their predictive value and the relevance of obtained findings for clinical application.This review reports key results from some of the most remarkable and encouraging achievements in neurovascular research that have been reported at the 10th International Symposium on Neuroprotection and Neurorepair. Basic science topics discussed herein focus on aspects such as neuroinflammation, extracellular vesicles, and the role of sex and age on stroke recovery. Translational reports highlighted endovascular techniques and targeted delivery methods, neurorehabilitation, advanced functional testing approaches for experimental studies, pre-and post-conditioning approaches as well as novel imaging and treatment strategies. Beyond ischemic stroke, particular emphasis was given on activities in the fields of traumatic brain injury and cerebral hemorrhage in which promising preclinical and clinical results have been reported. Although the number of neutral outcomes in clinical trials is still remarkably high when targeting cerebrovascular diseases, we begin to evidence stepwise but continuous progress towards novel treatment options. Advances in preclinical and translational research as reported herein are believed to have formed a solid foundation for this progress

    Microglial Responses after Ischemic Stroke and Intracerebral Hemorrhage

    Get PDF
    Stroke is a leading cause of death worldwide. Ischemic stroke is caused by blockage of blood vessels in the brain leading to tissue death, while intracerebral hemorrhage (ICH) occurs when a blood vessel ruptures, exposing the brain to blood components. Both are associated with glial toxicity and neuroinflammation. Microglia, as the resident immune cells of the central nervous system (CNS), continually sample the environment for signs of injury and infection. Under homeostatic conditions, they have a ramified morphology and phagocytose debris. After stroke, microglia become activated, obtain an amoeboid morphology, and release inflammatory cytokines (the M1 phenotype). However, microglia can also be alternatively activated, performing crucial roles in limiting inflammation and phagocytosing tissue debris (the M2 phenotype). In rodent models, microglial activation occurs very early after stroke and ICH; however, their specific roles in injury and repair remain unclear. This review summarizes the literature on microglial responses after ischemic stroke and ICH, highlighting the mediators of microglial activation and potential therapeutic targets for each condition

    A patient with encephalitis associated with NMDA receptor antibodies

    No full text
    Background A 34-year-old woman presented with headache, feverish sensation and anxiety, rapidly followed by homicidal ideation, aggressive agitation, seizures, hypoventilation, hyperthermia and prominent autonomic instability requiring intubation and sedation. She developed episodes of hypotension and bradycardia with periods of asystole lasting up to 15 seconds. Upon weaning off sedation, her eyes opened but she was unresponsive to stimuli. There was muscle rigidity, frequent facial grimacing, rhythmic abdominal contractions, kicking motions of the legs, and intermittent dystonic postures of the right arm
    corecore