98 research outputs found

    A multicenter, prospective, randomized comparison of a novel signal transmission capsule endoscope to an existing capsule endoscope.

    Get PDF
    BACKGROUND: MiroCam, a capsule endoscope, uses a novel transmission technology, electric-field propagation, which uses the human body as a conduction medium for data transmission. OBJECTIVE: To compare the ability of the MiroCam (MC) and PillCam (PC) to identify sources of obscure GI bleeding (OGIB). DESIGN: Prospective, multicenter, comparative study. SETTING: Six academic hospitals. PATIENTS: A total of 105 patients with OGIB. INTERVENTION: Patients ingested both the MC and PC capsules sequentially in a randomized fashion. MAIN OUTCOME MEASUREMENTS: Concordance of rates in identifying a source of OGIB, operational times, and rates of complete small-bowel examination. RESULTS: Data analysis resulted in 43 (48%) abnormal cases identifying a source of OGIB by either capsule. Twenty-four cases (55.8%) were positive by both capsules. There was negative agreement in 46 of 58 cases (79.3%). The κ index was 0.547 (χ(2) = 1.32; P = .36). In 12 cases, MC positively identified a source that was not seen on PC, whereas in 7 cases, PC positively identified a source that was not seen on MC. MC had a 5.6% higher rate of detecting small-bowel lesions (P = .54). MC captured images at 3 frames per second for 11.1 hours, and PC captured images at 2 frames per second for 7.8 hours (P \u3c .0001). Complete small-bowel examination was achieved in 93.3% for MC and 84.3% for PC (P = .10). LIMITATIONS: Readers were not blinded to the particular capsule they were reading. CONCLUSION: A positive diagnostic finding for OGIB was identified by either capsule in 48% of cases. The concordance rate between the 2 capsules was comparable to that of prior studies in identifying sources of small-bowel bleeding. The longer operational time of the MC may result in higher rates of complete small-bowel examination, which may, in turn, translate into a higher rate of detecting small-bowel lesions. (Clinical trial registration number: NCT00878982.)

    A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients

    Get PDF
    INTRODUCTION: The Oncotype DX assay was recently reported to predict risk for distant recurrence among a clinical trial population of tamoxifen-treated patients with lymph node-negative, estrogen receptor (ER)-positive breast cancer. To confirm and extend these findings, we evaluated the performance of this 21-gene assay among node-negative patients from a community hospital setting. METHODS: A case-control study was conducted among 4,964 Kaiser Permanente patients diagnosed with node-negative invasive breast cancer from 1985 to 1994 and not treated with adjuvant chemotherapy. Cases (n = 220) were patients who died from breast cancer. Controls (n = 570) were breast cancer patients who were individually matched to cases with respect to age, race, adjuvant tamoxifen, medical facility and diagnosis year, and were alive at the date of death of their matched case. Using an RT-PCR assay, archived tumor tissues were analyzed for expression levels of 16 cancer-related and five reference genes, and a summary risk score (the Recurrence Score) was calculated for each patient. Conditional logistic regression methods were used to estimate the association between risk of breast cancer death and Recurrence Score. RESULTS: After adjusting for tumor size and grade, the Recurrence Score was associated with risk of breast cancer death in ER-positive, tamoxifen-treated and -untreated patients (P = 0.003 and P = 0.03, respectively). At 10 years, the risks for breast cancer death in ER-positive, tamoxifen-treated patients were 2.8% (95% confidence interval [CI] 1.7–3.9%), 10.7% (95% CI 6.3–14.9%), and 15.5% (95% CI 7.6–22.8%) for those in the low, intermediate and high risk Recurrence Score groups, respectively. They were 6.2% (95% CI 4.5–7.9%), 17.8% (95% CI 11.8–23.3%), and 19.9% (95% CI 14.2–25.2%) for ER-positive patients not treated with tamoxifen. In both the tamoxifen-treated and -untreated groups, approximately 50% of patients had low risk Recurrence Score values. CONCLUSION: In this large, population-based study of lymph node-negative patients not treated with chemotherapy, the Recurrence Score was strongly associated with risk of breast cancer death among ER-positive, tamoxifen-treated and -untreated patients

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF
    corecore