761 research outputs found

    The composition of meteoroids impacting LDEF

    Get PDF
    So far we have completed an initial scanning electron microscopy (SEM) survey of craters on the exterior of the Long Duration Exposure Facility (LDEF) in the 100 micron to 1mm size range and done some quantitative analysis. In typical craters, the residue appears to be a mixture of glass and FeNi and sulfide beads with an overall chondritic elemental composition. In less than 10 percent of the craters, there is a substantial amount of meteoroid debris that also contains unmelted mineral grains. The relatively high abundance of forsterite and enststite among these irregular grains suggests that a high melting point probably plays a role in surviving impact without melting

    Habitat Fragmentation, Variable Edge Effects, and the Landscape-Divergence Hypothesis

    Get PDF
    Edge effects are major drivers of change in many fragmented landscapes, but are often highly variable in space and time. Here we assess variability in edge effects altering Amazon forest dynamics, plant community composition, invading species, and carbon storage, in the world's largest and longest-running experimental study of habitat fragmentation. Despite detailed knowledge of local landscape conditions, spatial variability in edge effects was only partially foreseeable: relatively predictable effects were caused by the differing proximity of plots to forest edge and varying matrix vegetation, but windstorms generated much random variability. Temporal variability in edge phenomena was also only partially predictable: forest dynamics varied somewhat with fragment age, but also fluctuated markedly over time, evidently because of sporadic droughts and windstorms. Given the acute sensitivity of habitat fragments to local landscape and weather dynamics, we predict that fragments within the same landscape will tend to converge in species composition, whereas those in different landscapes will diverge in composition. This ‘landscape-divergence hypothesis’, if generally valid, will have key implications for biodiversity-conservation strategies and for understanding the dynamics of fragmented ecosystems

    Climate Change Affects Reproductive Phenology in Lianas of Australia’s Wet Tropics

    Get PDF
    Lianas are increasing in abundance in many tropical forests. This increase can alter forest structure and decrease both carbon storage and tree diversity via antagonistic relationships between lianas and their host trees. Climate change is postulated as an underlying driver of increasing liana abundances, via increases in dry-season length, forest-disturbance events, and atmospheric CO2 concentrations; all factors thought to favour lianas. However, the impact of climate change on liana reproductive phenology, an underlying determinant of liana abundance, has been little studied, particularly outside of Neotropical forests. Over a 15-year period (2000–2014), we examined the phenological patterns of a liana community in intact rainforests of the Wet Tropics bioregion of Australia; a World Heritage Area and hotspot of floral diversity. Specifically, we assessed (1) flowering and fruiting patterns of liana species; (2) potential climate drivers of flowering and fruiting activity; and (3) the influence of El Niño-related climatic disturbances on liana phenology. We found that flowering and fruiting of the studied liana species increased over time. Liana reproduction, moreover, rose in apparent response to higher temperatures and reduced rainfall. Finally, we found flowering and fruiting of the liana species increased following El Niño events. These results suggest that liana reproduction and abundance are likely to increase under predicted future climate regimes, with potentially important impacts on the survival, growth, and reproduction of resident trees and thus the overall health of Australian tropical rainforests

    Effects of oil palm and human presence on activity patterns of terrestrial mammals in the Colombian Llanos

    Get PDF
    The ability of animals to adjust their behaviour can influence how they respond to environmental changes and human presence. We quantified activity patterns of terrestrial mammals in oil palm plantations and native riparian forest in Colombia to determine if species exhibited behavioural changes depending on the type of habitat and the presence of humans. Despite the large sampling effort (12,403 camera-days), we were only able to examine the activity patterns of ten species in riparian forests and seven species in oil palm plantations, with four species (capybara, giant anteater, lesser anteater and common opossum) being represented by enough records (i.e. n > 20) in both oil palm and forest to allow robust comparisons. Only capybaras showed an apparent change in activity patterns between oil palm plantations and riparian forests, shifting from being crepuscular in forest to predominantly nocturnal inside oil palm plantations. Further, capybaras, giant anteaters and white-tailed deer appeared to modify their activities to avoid human presence inside oil palm plantations by increasing nocturnality (temporal overlap Δ ^ ranged from 0.13 to 0.36), whereas jaguarundi had high overlap with human activities [Δ ^ =0.85 (0.61–0.90)]. Species pair-wise analysis within oil palm revealed evidence for temporal segregation between species occupying the same trophic position (e.g. foxes and jaguarundi), whereas some predators and their prey (e.g. ocelots and armadillos) had high overlaps in temporal activity patterns as might be expected. Our findings shed light on the potential behavioural adaptation of mammals to anthropogenic landscapes, a feature not captured in traditional studies that focus on measures such as species richness or abundance

    Land management strategies can increase oil palm plantation use by some terrestrial mammals in Colombia

    Get PDF
    While the conservation role of remaining natural habitats in anthropogenic landscapes is clear, the degree to which agricultural matrices impose limitations to animal use is not well understood, but vital to assess species’ resilience to land use change. Using an occupancy framework, we evaluated how oil palm plantations affect the occurrence and habitat use of terrestrial mammals in the Colombian Llanos. Further, we evaluated the effect of undergrowth vegetation and proximity to forest on habitat use within plantations. Most species exhibited restricted distributions across the study area, especially in oil palm plantations. Habitat type strongly influenced habitat use of four of the 12 more widely distributed species with oil palm negatively affecting species such as capybara and naked-tailed armadillo. The remaining species showed no apparent effect of habitat type, but oil palm and forest use probabilities varied among species. Overall, generalist mesocarnivores, white-tailed deer, and giant anteater were more likely to use oil palm while the remaining species, including ocelot and lesser anteater, showed preferences for forest. Distance to nearest forest had mixed effects on species habitat use, while understory vegetation facilitated the presence of species using oil palm. Our findings suggest that allowing undergrowth vegetation inside plantations and maintaining nearby riparian corridors would increase the likelihood of terrestrial mammals’ occurrence within oil palm landscapes

    Optical Light Curve of the Type Ia Supernova 1998bu in M96 and the Supernova Calibration of the Hubble Constant

    Get PDF
    We present the UBVRI light curves of the Type Ia supernova SN 1998bu which appeared in the nearby galaxy M96 (NGC 3368). M96 is a spiral galaxy in the Leo I group which has a Cepheid-based distance. Our photometry allows us to calculate the absolute magnitude and reddening of this supernova. These data, when combined with measurements of the four other well-observed supernovae with Cepheid based distances, allow us to calculate the Hubble constant with respect to the Hubble flow defined by the distant Calan/Tololo Type Ia sample. We find a Hubble constant of 64.0 +/- 2.2(internal) +/- 3.5(external) km/s/Mpc, consistent with most previous estimates based on Type Ia supernovae. We note that the two well-observed Type Ia supernovae in Fornax, if placed at the Cepheid distance to the possible Fornax spiral NGC 1365, are apparently too faint with respect to the Calan/Tololo sample calibrated with the five Type Ia supernovae with Cepheid distances to the host galaxies.Comment: AAS LaTeX, 20 pages, 4 figures, 6 tables, accepted for publication in the Astronomical Journal. Figure 1 (finding chart) not include

    When rare species are not important: linking plot-based vegetation classifications and landscape-scale mapping in Australian savanna vegetation

    Get PDF
    Plant communities in extensive landscapes are often mapped remotely using detectable patterns based on vegetation structure and canopy species with a high relative cover. A plot-based classification which includes species with low relative canopy cover and ignores vegetation structure, may result in plant communities not easily reconcilable with the landscape patterns represented in mapping. In our study, we investigate the effects on classification outcomes if we (1) remove rare species based on canopy cover, and (2) incorporate vegetation structure by weighting species’ cover by different measures of vegetation height. Using a dataset of 101 plots of savanna vegetation in north-eastern Australia we investigated first, the effect of removing rare species using four cover thresholds (1, 5, 8 and 10% contribution to total cover) and second, weighting species by four height measures including actual height as well as continuous and categorical transformations. Using agglomerative hierarchical clustering we produced a classification for each dataset and compared them for differences in: patterns of plot similarity, clustering, species richness and evenness, and characteristic species. We estimated the ability of each classification to predict species cover using generalised linear models. We found removing rare species at any cover threshold produced characteristic species appearing to correspond to landscape scale changes and better predicted species cover in grasslands and shrublands. However, in woodlands it made no difference. Using actual height of vegetation layer maintained vegetation structure, emphasised canopy and then sub-canopy species in clustering, and predicted species cover best of the height-measures tested. Thus, removing rare species and weighting species by height are useful techniques for identifying plant communities from plot-based classifications which are conceptually consistent with those in landscape scale mapping. This increases the confidence of end-users in both the classifications and the maps, thus enhancing their use in land management decisions. | Supporting Information Supporting Information </supplementary-material

    Pattern and process in Amazon tree turnover, 1976-2001

    Get PDF
    Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests

    An Amazonian rainforest and its fragments as a laboratory of global change

    Get PDF
    We synthesize findings from one of the world’s largest and longest-running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ~1,000 km2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38-year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional- and global-change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long-term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction-prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating populations of species in response to a variety of external vicissitudes. Rare weather events such as droughts, windstorms and floods have had strong impacts on fragments and left lasting legacies of change. Both forest fragments and the intact forests in our study area appear to be influenced by larger-scale environmental drivers operating at regional or global scales. These drivers are apparently increasing forest productivity and have led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree-community composition, and increases in liana (woody vine) abundance. Such large-scale drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects for some species and ecological phenomena. Hence, the impacts of fragmentation on Amazonian biodiversity and ecosystem processes appear to be a consequence not only of local site features but also of broader changes occurring at landscape, regional and even global scales

    Prehistory of Transit Searches

    Full text link
    Nowadays the more powerful method to detect extrasolar planets is the transit method. We review the planet transits which were anticipated, searched, and the first ones which were observed all through history. Indeed transits of planets in front of their star were first investigated and studied in the solar system. The first observations of sunspots were sometimes mistaken for transits of unknown planets. The first scientific observation and study of a transit in the solar system was the observation of Mercury transit by Pierre Gassendi in 1631. Because observations of Venus transits could give a way to determine the distance Sun-Earth, transits of Venus were overwhelmingly observed. Some objects which actually do not exist were searched by their hypothetical transits on the Sun, as some examples a Venus satellite and an infra-mercurial planet. We evoke the possibly first use of the hypothesis of an exoplanet transit to explain some periodic variations of the luminosity of a star, namely the star Algol, during the eighteen century. Then we review the predictions of detection of exoplanets by their transits, those predictions being sometimes ancient, and made by astronomers as well as popular science writers. However, these very interesting predictions were never published in peer-reviewed journals specialized in astronomical discoveries and results. A possible transit of the planet beta Pic b was observed in 1981. Shall we see another transit expected for the same planet during 2018? Today, some studies of transits which are connected to hypothetical extraterrestrial civilisations are published in astronomical refereed journals. Some studies which would be classified not long ago as science fiction are now considered as scientific ones.Comment: Submiited to Handbook of Exoplanets (Springer
    • …
    corecore