74 research outputs found

    Evidence of Yersinia pestis DNA from fleas in an endemic plague area of Zambia

    Get PDF
    BACKGROUND: Yersinia pestis is a bacterium that causes plague which infects a variety of mammals throughout the world. The disease is usually transmitted among wild rodents through a flea vector. The sources and routes of transmission of plague are poorly researched in Africa, yet remains a concern in several sub-Saharan countries. In Zambia, the disease has been reported on annual basis with up to 20 cases per year, without investigating animal reservoirs or vectors that may be responsible in the maintenance and propagation of the bacterium. In this study, we undertook plague surveillance by using PCR amplification of the plasminogen activator gene in fleas. FINDINGS: Xenopsylla species of fleas were collected from 83 rodents trapped in a plague endemic area of Zambia. Of these rodents 5 had fleas positive (6.02%) for Y. pestis plasminogen activator gene. All the Y. pestis positive rodents were gerbils. CONCLUSIONS: We conclude that fleas may be responsible in the transmission of Y. pestis and that PCR may provide means of plague surveillance in the endemic areas of Zambia

    Identification of the onchocerciasis vector in the Kakoi-Koda focus of the Democratic Republic of Congo

    Get PDF
    Background: The objective of this study was to characterise the vector in a small hyper-endemic focus of onchocerciasis (the Kakoi-Koda focus) which has recently been discovered on the western slopes of the rift valley above Lake Albert. Methodology/Principal Findings: Aquatic stages of blackflies were collected by hand from streams and rivers, and anthropophilic adult females were collected by human landing catches. Using a combination of morphotaxonomy and DNA barcoding, the blackflies collected biting humans within the focus were identified as Simulium dentulosum and Simulium vorax, which were also found breeding in local streams and rivers. Simulium damnosum s.l., Simulium neavei and Simulium albivirgulatum were not found (except for a single site in 2009 where crabs were carrying S. neavei). Anthropophilic specimens from the focus were screened for Onchocerca DNA using discriminant qualitative real-time triplex PCR. One specimen of S. vorax was positive for Onchocerca volvulus in the body, and out of 155 S. dentulosum, 30% and 11% were infected and infective (respectively). Conclusions/Significance: Simulium dentulosum currently appears to be the main vector of human onchocerciasis within the Kakoi-Koda focus, and S. vorax may be a secondary vector. It remains possible that S. neavei was the main (or only) vector in the past having now become rare as a result of the removal of tree-cover and land-use changes. Simulium vorax has previously been shown to support the development of O. volvulus in the laboratory, but this is the first time that S. dentulosum has been implicated as a probable vector of onchocerciasis, and this raises the possibility that other blackfly species which are not generally considered to be anthropophilic vectors might become vectors under suitable conditions. Because S. dentulosum is not a vector in endemic areas surrounding the Kakoi-Koda focus, it is probable that the Kakoi-Koda focus is significantly isolated

    Population dynamics and genetic connectivity in recent chimpanzee history

    Get PDF
    Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees

    Flea Diversity as an Element for Persistence of Plague Bacteria in an East African Plague Focus

    Get PDF
    Plague is a flea-borne rodent-associated zoonotic disease that is caused by Yersinia pestis and characterized by long quiescent periods punctuated by rapidly spreading epidemics and epizootics. How plague bacteria persist during inter-epizootic periods is poorly understood, yet is important for predicting when and where epizootics are likely to occur and for designing interventions aimed at local elimination of the pathogen. Existing hypotheses of how Y. pestis is maintained within plague foci typically center on host abundance or diversity, but little attention has been paid to the importance of flea diversity in enzootic maintenance. Our study compares host and flea abundance and diversity along an elevation gradient that spans from low elevation sites outside of a plague focus in the West Nile region of Uganda (∼725–1160 m) to higher elevation sites within the focus (∼1380–1630 m). Based on a year of sampling, we showed that host abundance and diversity, as well as total flea abundance on hosts was similar between sites inside compared with outside the plague focus. By contrast, flea diversity was significantly higher inside the focus than outside. Our study highlights the importance of considering flea diversity in models of Y. pestis persistence

    Citizen science and online data: Opportunities and challenges for snake ecology and action against snakebite

    Get PDF
    The secretive behavior and life history of snakes makes studying their biology, distribution, and the epidemiology of venomous snakebite challenging. One of the most useful, most versatile, and easiest to collect types of biological data are photographs, particularly those that are connected with geographic location and date-time metadata. Photos verify occurrence records, provide data on phenotypes and ecology, and are often used to illustrate new species descriptions, field guides and identification keys, as well as in training humans and computer vision algorithms to identify snakes. We scoured eleven online and two offline sources of snake photos in an attempt to collect as many photos of as many snake species as possible, and attempt to explain some of the inter-species variation in photograph quantity among global regions and taxonomic groups, and with regard to medical importance, human population density, and range size. We collected a total of 725,565 photos—between 1 and 48,696 photos of 3098 of the world's 3879 snake species (79.9%), leaving 781 “most wanted” species with no photos (20.1% of all currently-described species as of the December 2020 release of The Reptile Database). We provide a list of most wanted species sortable by family, continent, authority, and medical importance, and encourage snake photographers worldwide to submit photos and associated metadata, particularly of “missing” species, to the most permanent and useful online archives: The Reptile Database, iNaturalist, and HerpMapper.ISSN:2590-171

    Plague and Climate: Scales Matter

    Get PDF
    Plague is enzootic in wildlife populations of small mammals in central and eastern Asia, Africa, South and North America, and has been recognized recently as a reemerging threat to humans. Its causative agent Yersinia pestis relies on wild rodent hosts and flea vectors for its maintenance in nature. Climate influences all three components (i.e., bacteria, vectors, and hosts) of the plague system and is a likely factor to explain some of plague's variability from small and regional to large scales. Here, we review effects of climate variables on plague hosts and vectors from individual or population scales to studies on the whole plague system at a large scale. Upscaled versions of small-scale processes are often invoked to explain plague variability in time and space at larger scales, presumably because similar scale-independent mechanisms underlie these relationships. This linearity assumption is discussed in the light of recent research that suggests some of its limitations

    Fleas as parasites of the family Canidae

    Get PDF
    Historically, flea-borne diseases are among the most important medical diseases of humans. Plague and murine typhus are known for centuries while the last years brought some new flea-transmitted pathogens, like R. felis and Bartonella henselae. Dogs may play an essential or an accidental role in the natural transmission cycle of flea-borne pathogens. They support the growth of some of the pathogens or they serve as transport vehicles for infected fleas between their natural reservoirs and humans. More than 15 different flea species have been described in domestic dogs thus far. Several other species have been found to be associated with wild canids. Fleas found on dogs originate from rodents, birds, insectivores and from other Carnivora. Dogs therefore may serve as ideal bridging hosts for the introduction of flea-borne diseases from nature to home. In addition to their role as ectoparasites they cause nuisance for humans and animals and may be the cause for severe allergic reactions

    Pangolins in global camera trap data: Implications for ecological monitoring

    Get PDF
    Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to limited research, resulting in a lack of reliable population estimates and standardised survey methods for the eight extant species. Camera trapping represents a unique opportunity for broad-scale collaborative species monitoring due to its largely non-discriminatory nature, which creates considerable volumes of data on a relatively wide range of species. This has the potential to shed light on the ecology of rare, cryptic and understudied taxa, with implications for conservation decision-making. We undertook a global analysis of available pangolin data from camera trapping studies across their range in Africa and Asia. Our aims were (1) to assess the utility of existing camera trapping efforts as a method for monitoring pangolin populations, and (2) to gain insights into the distribution and ecology of pangolins. We analysed data collated from 103 camera trap surveys undertaken across 22 countries that fell within the range of seven of the eight pangolin species, which yielded more than half a million trap nights and 888 pangolin encounters. We ran occupancy analyses on three species (Sunda pangolin Manis javanica, white-bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection probabilities varied with forest cover and levels of human influence for P. tricuspis, but were low (<0.05) for all species. Occupancy was associated with distance from rivers for M. javanica and S. gigantea, elevation for P. tricuspis and S. gigantea, forest cover for P. tricuspis and protected area status for M. javanica and P. tricuspis. We conclude that camera traps are suitable for the detection of pangolins and large-scale assessment of their distributions. However, the trapping effort required to monitor populations at any given study site using existing methods appears prohibitively high. This may change in the future should anticipated technological and methodological advances in camera trapping facilitate greater sampling efforts and/or higher probabilities of detection. In particular, targeted camera placement for pangolins is likely to make pangolin monitoring more feasible with moderate sampling efforts

    Population dynamics and genetic connectivity in recent chimpanzee history

    Get PDF
    The European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 864203) (to T.M.-B.). BFU2017-86471-P (MINECO/FEDER, UE) (to T.M.-B.). “Unidad de Excelencia María de Maeztu”, funded by the AEI (CEX2018-000792-M) (to T.M.-B.). Howard Hughes International Early Career (to T.M.-B.). NIH 1R01HG010898-01A1 (to T.M.-B.). Secretaria d’Universitats i Recerca and CERCA Program del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880) (to T.M.-B.). UCL’s Wellcome Trust ISSF3 award 204841/Z/16/Z (to A.M.A. and J.M.S.). Generalitat de Catalunya (2017 SGR-1040) (to M. Llorente). Wellcome Trust Investigator Award 202802/Z/16/Z (to D.A.H.). The Pan African Program: The Cultured Chimpanzee (PanAf) is generously funded by the Max Planck Society, the Max Planck Society Innovation Fund, and the Heinz L. Krekeler Foundation.Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees.Publisher PDFPeer reviewe

    Pangolins in Global Camera Trap Data: Implications for Ecological Monitoring

    Get PDF
    Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to limited research, resulting in a lack of reliable population estimates and standardised survey methods for the eight extant species. Camera trapping represents a unique opportunity for broad-scale collaborative species monitoring due to its largely non-discriminatory nature, which creates considerable volumes of data on a relatively wide range of species. This has the potential to shed light on the ecology of rare, cryptic and understudied taxa, with implications for conservation decision-making. We undertook a global analysis of available pangolin data from camera trapping studies across their range in Africa and Asia. Our aims were (1) to assess the utility of existing camera trapping efforts as a method for monitoring pangolin populations, and (2) to gain insights into the distribution and ecology of pangolins. We analysed data collated from 103 camera trap surveys undertaken across 22 countries that fell within the range of seven of the eight pangolin species, which yielded more than half a million trap nights and 888 pangolin encounters. We ran occupancy analyses on three species (Sunda pangolin Manis javanica, white-bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection probabilities varied with forest cover and levels of human influence for P. tricuspis, but were low (M. javanica and S. gigantea, elevation for P. tricuspis and S. gigantea, forest cover for P. tricuspis and protected area status for M. javanica and P. tricuspis. We conclude that camera traps are suitable for the detection of pangolins and large-scale assessment of their distributions. However, the trapping effort required to monitor populations at any given study site using existing methods appears prohibitively high. This may change in the future should anticipated technological and methodological advances in camera trapping facilitate greater sampling efforts and/or higher probabilities of detection. In particular, targeted camera placement for pangolins is likely to make pangolin monitoring more feasible with moderate sampling efforts
    corecore