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Abstract 21 

Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to limited 22 

research, resulting in a lack of reliable population estimates and standardised survey methods for 23 

the eight extant species. Camera trapping represents a unique opportunity for broad-scale 24 

collaborative species monitoring due to its largely non-discriminatory nature, which creates 25 

considerable volumes of data on a relatively wide range of species. This has the potential to shed 26 

light on the ecology of rare, cryptic and understudied taxa, with implications for conservation 27 

decision-making. We undertook a global analysis of available pangolin data from camera trapping 28 

studies across their range in Africa and Asia. Our aims were (1) to assess the utility of existing 29 

camera trapping efforts as a method for monitoring pangolin populations, and (2) to gain insights 30 

into the distribution and ecology of pangolins. We analysed data collated from 103 camera trap 31 

surveys undertaken across 22 countries that fell within the range of seven of the eight pangolin 32 

species, which yielded more than half a million trap nights and 888 pangolin encounters. We ran 33 

occupancy analyses on three species (Sunda pangolin Manis javanica, white-bellied pangolin 34 

Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection probabilities varied with forest 35 

cover and levels of human influence for P. tricuspis, but were low (< 0.05) for all species. Occupancy 36 

was associated with distance from rivers for M. javanica and S. gigantea, elevation for P. tricuspis 37 

and S. gigantea, forest cover for P. tricuspis and protected area status for M. javanica and P. 38 

tricuspis. We conclude that camera traps are suitable for the detection of pangolins and large-scale 39 

assessment of their distributions. However, the trapping effort required to monitor populations at 40 

any given study site using existing methods appears prohibitively high. This may change in the future 41 

should anticipated technological and methodological advances in camera trapping facilitate greater 42 

sampling efforts and/or higher probabilities of detection. In particular, targeted camera placement 43 

for pangolins is likely to make pangolin monitoring more feasible with moderate sampling efforts. 44 

 45 

Keywords: camera trap, detection, occupancy modelling, pangolin, macroecology, monitoring 46 
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1. Introduction 47 

Pangolins are considered to be the world’s most trafficked wild mammals (Challender & Waterman, 48 

2017; Heinrich et al., 2017). With contemporary illegal trade largely involving whole pangolins and 49 

their scales (Nijman, 2015), pangolins are threatened by overexploitation for both international and 50 

local use. Pangolin products are trafficked within Asia and, increasingly, from West and Central 51 

Africa to East and Southeast Asia, mainly China and Vietnam (Heinrich et al., 2017). All eight species 52 

are listed as threatened on The IUCN Red List of Threatened SpeciesTM (hereafter ‘Red List’; IUCN, 53 

2018) and in 2016 were included in CITES Appendix I, establishing an international ban on 54 

commercial trade in wild-caught pangolins and their derivatives. Nonetheless, pangolin poaching 55 

and trafficking continues seemingly unabated (Heinrich et al., 2017).  56 

 57 

Despite high levels of exploitation, pangolins have received little research attention and, until the 58 

last decade, scant conservation investment. Consequently, their biology and ecology remain poorly 59 

understood, with even basic ecological knowledge lacking for multiple species (Willcox et al., 2019). 60 

Of the eight recognised pangolin species, the black-bellied pangolin Phataginus tetradactyla, white-61 

bellied pangolin Phataginus tricuspis, giant pangolin Smutsia gigantea, and Temminck’s ground 62 

pangolin Smutsia temminckii are distributed across sub-Saharan Africa. The Indian pangolin Manis 63 

crassicaudata, Philippine pangolin Manis culionensis, Sunda pangolin Manis javanica, and Chinese 64 

pangolin Manis pentadactyla are found across large parts of South, East and Southeast Asia. 65 

Pangolins are solitary, predominantly nocturnal (with the exception of P. tetradactyla) and 66 

myrmecophagous (Kingdon & Hoffman, 2013). They are known from a variety of habitats including 67 

primary and secondary tropical forests, moist and dry lowland and montane forests, shrublands, 68 

grasslands, and swamplands, ranging up to a maximum elevation of around 3000 m asl (Baillie et al., 69 

2014; Challender et al., 2014a, 2014b; Lagrada et al., 2014; Pietersen et al., 2014; Waterman et al., 70 

2014a,b,c). While the Chinese, Indian, giant and Temminck’s pangolins are ground-dwelling, the 71 

Philippine, Sunda and white-bellied pangolins are semi-arboreal, and the black-bellied pangolin 72 

almost exclusively arboreal. The ground-dwelling species use different types of burrows for feeding 73 

and resting, to which they show low fidelity (e.g. Karawita et al., 2018; Lin, 2011). Indian, Chinese 74 

and giant pangolins are thought to remain in close proximity to water sources (e.g. Karawita et al., 75 

2018; Wu et al., 2004), while Temminck’s ground pangolins are considered to be largely water-76 

independent (Stuart, 1980). Beyond this, little is understood about the natural history of pangolins, 77 

including home range size, habitat use, activity patterns and reproductive behaviours. 78 

 79 

Population estimates for any pangolin species at the national or international level are almost non-80 

existent, with the exception of S. temminckii in South Africa (Pietersen et al., 2016). Monitoring of 81 
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pangolin populations is constrained by the absence of standardised survey methods (Challender et 82 

al., in prep). A range of approaches have been applied with mixed success, including burrow counts, 83 

camera trapping, detection dog teams, social research, and telemetry (see Willcox et al., 2019). 84 

Camera trapping is one of the few methods that has been attempted for most pangolin species, 85 

although its use has varied widely in terms of sampling strategy and intensity. Willcox et al. (2019) 86 

report that large-scale survey efforts using camera traps as part of general biodiversity monitoring 87 

activities, in which cameras are frequently located along trails, typically result in very low detection 88 

rates for pangolins. In many places in Southeast Asia, this is thought to be because populations have 89 

declined severely and occur at very low densities, but camera placement strategies may also be 90 

suboptimal for pangolins (Willcox et al., 2019). Cameras targeted at potential pangolin field signs, 91 

such as ant nests or burrows, have had more success in confirming presence (e.g. Bruce et al., 2018; 92 

ZSL, 2016), as have cameras placed in strictly random locations (Wearn et al., 2017). However, 93 

camera placement strategies may be less critical where populations of ground-dwelling pangolins 94 

are still relatively abundant because, hypothetically, detection rates should be higher (Challender et 95 

al., in prep; Willcox et al., 2019). 96 

 97 

Collaborative biodiversity monitoring across multiple studies and locations offers the potential for 98 

broad-scale ecological assessments with extensive geographic coverage (Rich et al., 2017; Steenweg 99 

 et al., 2017). Remote camera trapping methods offer an ideal opportunity for collaborative 100 

research, as they are effective at sampling a wide variety of terrestrial mammals and birds (> 100 g 101 

body size) and are non-exclusive to any particular species of interest (Wearn & Glover-Kapfer, 2017). 102 

They thereby create large volumes of potentially informative data on a wide range of species (Wearn 103 

& Glover-Kapfer, 2019; Steenweg et al., 2017). These data are increasingly being used to assess 104 

understudied species of conservation concern (e.g. Fischer et al., 2017; Linkie et al., 2013; Schank et 105 

al., 2017; Scotson et al., 2017a). Although lack of standardisation across studies can preclude the 106 

incorporation of fine-scale covariates (e.g. site-specific vegetation or climatic variables), cross-site 107 

analysis of camera trap data using global covariate datasets (such as those based on remote sensing) 108 

can assist with answering basic questions regarding the distribution and ecology of threatened 109 

species. Pangolins are potentially well suited to camera trap monitoring, because they are relatively 110 

large (> 1 kg), endothermic (and therefore suitable for the passive infrared sensors most commonly 111 

used on camera traps), and most species are at least partially terrestrial. A collaborative range-wide 112 

assessment that brings together small numbers of records from a multitude of studies has the 113 

potential to contribute significantly to our understanding of pangolin populations and monitoring 114 

methods. This knowledge is urgently needed in order to inform targeted conservation interventions, 115 

including identifying potential strongholds, influencing national and international policy, and 116 



6 

evaluating the impact of both exploitation and conservation interventions (Challender et al., 2014c; 117 

CITES, 2017). These needs have been recognised as priorities by the IUCN SSC Pangolin Specialist 118 

Group (Challender et al., 2014c), pangolin range states (Anon, 2015) and the Parties to CITES (CITES, 119 

2017). 120 

 121 

In this study, we combined camera trap efforts on an unprecedented scale, aiming to (1) assess the 122 

utility of existing camera trapping efforts as a method for monitoring pangolin populations, and (2) 123 

improve understanding of pangolin distribution and ecology. This is the first attempt at modelling 124 

the probability of occurrence (hereafter, occupancy; MacKenzie et al., 2002) of pangolins throughout 125 

their known range, enabling us to offer insights into the broad factors determining pangolin 126 

distribution patterns and the challenges of monitoring pangolins using camera trap methods. 127 

 128 

2. Materials and methods 129 

2.1 Data collection and preparation 130 

We performed extensive literature reviews of camera trap research conducted in regions within the 131 

predicted range of all pangolin species published between 2010 and 2016 using ISI Web of Science in 132 

December 2015 (Asia) and September 2016 (Africa). We included all articles regardless of target 133 

species using the generic search terms (“camera trap*” AND “Asia”) and (“camera trap*” AND 134 

“Africa”). We used these data to create a database of correspondence authors from whom we 135 

requested data. In addition, we reviewed the activities of major regional and international NGOs and 136 

obtained data from publicly advertised camera trapping projects within relevant regions, as well as 137 

using freely available camera trap data provided by the Tropical Ecology Assessment and Monitoring 138 

(TEAM) Network. We obtained further datasets where correspondence authors and NGO 139 

representatives connected us with colleagues working on relevant projects. The data we requested 140 

comprised latitudes and longitudes of camera trap stations, capture histories for cameras that 141 

recorded pangolins, and summary data for all other cameras. We accepted reported pangolin 142 

species identifications without further verification. 143 

 144 

We overlaid individual camera trap locations with each species distribution (as defined by the Red 145 

List) and created detection histories for each species using all cameras located within their 146 

respective ranges (Baillie et al., 2014; Challender et al., 2014a, 2014b; Lagrada et al., 2014; Pietersen 147 

et al., 2014; Waterman et al., 2014a, 2014b, 2014c). In the detection matrix, a value of 1 indicated 148 

that the species was detected on a given day at a given camera trap station, while 0 represented the 149 

absence of detection. In the absence of empirical data, we defined the maximum length of a 150 

sampling session (in which we assume that camera trap locations were closed to changes in 151 
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occupancy) as six months based on recommendations in Wearn & Glover-Kapfer (2017) for medium 152 

to large mammals. Where sampling in a given study took place over more than 6 months, we split 153 

sampling into multiple sessions. We then stacked data from different studies and sessions to create 154 

a single detection history matrix (in which each row is therefore a given camera trap station in a 155 

given session). We note that, because sampling in different studies was not concurrent, our 156 

occupancy estimates do not apply to a specific time period, but to the occupancy state as it existed 157 

across the different study areas when they were sampled. In addition, by stacking data from 158 

different sessions within a study, we have introduced some dependence across rows of the 159 

detection matrix where camera trap stations were repeat-surveyed. However, we felt the benefits of 160 

providing models with more data were larger than the cost of potentially under-estimating sampling 161 

variances. Due to a low number of records, we collapsed five-day sampling periods into single trap 162 

occasions in order to increase per-occasion detection probability. We used ArcGIS Desktop Version 163 

10.0 (ESRI, Redlands, CA) and QGIS Version 2.18 (QGIS Development Team, 2017) to ensure 164 

independence of camera trap samples by establishing a minimum distance of 25 m between 165 

cameras (Kays et al., 2009), using random selection to eliminate stations where necessary. Given 166 

that the spacing between some of our camera trap stations was likely less than the home-range 167 

diameter of pangolins, we interpret occupancy estimates as the probability of a location being used 168 

over the period of sampling, rather than the probability it was occupied (Latif et al., 2016). 169 

 170 

Due to lack of standardisation across studies included in our dataset, we extracted station-level 171 

covariates for each camera trap using GIS software and freely available global datasets. These 172 

consisted of distance to the nearest river (based on HydroSHEDS; Lehner et al., 2008); a binary 173 

indicator of protection status, where protected areas were defined as land falling under any of the 174 

IUCN protected area categories (World Database on Protected Areas; UNEP-WCMC & IUCN, 2015); 175 

elevation (Viewfinder Panoramas; de Ferranti, 2012); percentage forest cover for 2015, which was 176 

the year most represented in our dataset (extracted from Hansen et al., 2013); and an index of 177 

human influence inferred from datasets on human population density, land use and infrastructure 178 

(built-up areas, night-time lights and land cover), and potential for human access (coastlines, roads, 179 

railroads and navigable rivers) (Global Human Influence Index v2; WCS and CIESIN, 2005). We 180 

expected that these global datasets would capture aspects of pangolin ecology based on current 181 

knowledge, as well as the threats they face from hunting and human-induced habitat changes. All 182 

continuous covariates were scaled using the mean and standard deviation in R. All variance inflation 183 

factors were < 3 (Zuur et al., 2010).  184 

 185 
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2.2 Occupancy models 186 

For species with sufficient captures, we analysed the detection data with single-season occupancy 187 

models (MacKenzie et al., 2002) using the R package unmarked (Fiske & Chandler, 2011). We used 188 

occupancy models to analyse two key parameters: occupancy (ψ) and detectability (p), initially 189 

creating a null model that assumed both parameters were constant across all camera trap stations. 190 

Given the low number of pangolin records obtained, we were unable to fit a maximal model 191 

containing all detection and occupancy covariates simultaneously. We therefore built a set of 192 

candidate models for each species in a two-staged process that first identified significant detection 193 

covariates, and then carried these forward to assess the influence of occupancy covariates. We 194 

considered a subset of covariates to have a potential influence on detection probability, namely 195 

protected area status, human influence and forest cover. We hypothesised that protected area 196 

status and human influence might be a determinant of hunting pressure, which in turn may affect 197 

the movement patterns of pangolins and therefore detectability. We hypothesised that forest cover 198 

might be associated with variation in understorey vegetation density, which in turn may affect the 199 

size of the detection zone of camera traps. We incorporated all previously described station-level 200 

covariates as potential influencers of occupancy. 201 

 202 

In the first stage of modelling, we followed an information theoretic approach to determine the 203 

importance of detection covariates (Burnham & Anderson, 2002) using the Akaike Information 204 

Criterion corrected for small sample size (AICc). We carried only those parameters contained in 205 

models with ΔAICc ≤ 6 forward into the second stage (Harrison et al., 2018). Our model selection 206 

process therefore consisted of: (1) detection models, in which occupancy was held constant and 207 

detection probability was assumed to be either constant or a function of the covariates protected 208 

area status, human influence and/or forest cover; and (2) variable detection and occupancy models, 209 

in which both occupancy and detection probability were assumed to be either constant or a function 210 

of study covariates. We compared models containing all possible covariate combinations and 211 

conducted model averaging across all models with ΔAICc ≤ 6 compared with the top-ranking model 212 

using the R package AICcmodavg (Mazerolle, 2017). We inferred the relative importance of variables 213 

based on their standardised effect sizes and considered effects to be significant when their model-214 

averaged confidence intervals did not cross zero.  215 

 216 

Given the paucity of pangolin detections, we also attempted to fit similar occupancy models in a 217 

Bayesian framework, using Just Another Gibbs Sampler (v4.3.0; Plummer, 2012). We provide details 218 

of this modelling (including prior specification) in Appendix S3. We hypothesised that a Bayesian 219 

approach might perform better with the small sample sizes, and be robust to boundary effects 220 
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caused by low detection probabilities (Welsh et al., 2013). The results we obtained were 221 

qualitatively similar to those from unmarked, and we were still only able to fit occupancy models 222 

with covariates for the Sunda pangolin, white-bellied pangolin and giant pangolin. We therefore 223 

present these results in the Supplementary Material (Appendix S3).  224 

 225 

3. Results 226 

3.1 Data overview 227 

We obtained camera trap data from 103 studies distributed across fourteen African countries and 228 

eight Asian countries (Figure 1), totalling 508,312 trap nights. This effort yielded 888 pangolin 229 

detections (Table 1). Studies were primarily targeting specific medium to large terrestrial mammals 230 

(e.g. sun bear Helarctos malayanus, leopard cat Prionailurus bengalensis) or taxonomic groups (e.g. 231 

felids, carnivores), or otherwise were assessing the whole community of terrestrial mammals and 232 

birds. Camera traps were sited on a mixture of wildlife trails, man-made trails, active roads, 233 

abandoned roads and random off-trail locations. 234 

 235 

3.2 Occupancy models 236 

Detections of M. crassicaudata, M. culionensis, M. pentadactyla, P. tetradactyla and S. temminckii 237 

were too few to implement occupancy models. The models suffered from boundary estimates or 238 

otherwise failed to produce sensible estimates (e.g. very large standard errors for one or more 239 

parameters). We obtained very low detection estimates from null models for the remaining species  240 

(M. javanica: 0.025 ± 0.004 SE; P. tricuspis: 0.026 ± 0.003; S. gigantea: 0.039 ± 0.003). Through our 241 

Figure 1. Map of camera trap survey locations across the range of African and Asian pangolin species. Points 

represent the mean camera trap location for each survey. 
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two-staged model selection process, we obtained 51 candidate models for M. javanica, 14 for P. 242 

tricuspis and 52 for S. gigantea. Following model averaging, our results indicated significant 243 

influences of forest cover and human influence on detection probability, and of elevation, distance 244 

from rivers, protected area status and human influence on occupancy (Figure 2).  245 

Table 1. Summary of camera trap data obtained for analysing occupancy of pangolins across their range. 
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 246 

Species Represented range 

countries 

Studies 

(n) 

Camera 

traps (n) 

Five-day trap 

occasions (n) 

Trap occasions 

with detections 

(n) 

Naive 

occupancy
1 

Naive 

detection 

probability
2
 

Indian pangolin 

Manis crassicaudata 

India 8 361 9,405 29 0.07 <0.01 

Philippine pangolin 

Manis culionensis 

No data obtained N/A N/A N/A N/A N/A N/A 

Sunda pangolin 

Manis javanica 

Cambodia 

Indonesia 

Laos 

Malaysia 

Singapore 

Thailand 

Vietnam 

43 2,944 33,857 162 0.04 <0.01 

Chinese pangolin 

Manis pentadactyla 

India 

Laos 

Vietnam 

5 737 9,547 3 <0.01 <0.01 

Black-bellied pangolin 

Phataginus tetradactyla 

Cameroon 

Gabon 

Liberia 

Republic of the Congo 

12 834 8,186 0 N/A N/A 

White-bellied pangolin 

Phataginus tricuspis 

Cameroon 

DRC 

Gabon 

Liberia 

Republic of the Congo 

Rwanda 

South Sudan 

Uganda 

18 2,287 29,083 275 0.10 <0.01 

Giant pangolin 

Smutsia gigantea 

Cameroon 

DRC 

Gabon 

Liberia 

Republic of the Congo 

Rwanda 

South Sudan 

Uganda 

17 1,993 27,249 414 0.13 0.02 

Temminck’s ground 

pangolin 

Smutsia temminckii 

Botswana 

Kenya 

Namibia 

South Africa 

Tanzania 

Zimbabwe 

13 708 12,654 5 <0.01 <0.01 

1
Proportion of surveyed camera trap locations with pangolin detections. 

2
Proportion of sampling occasions with pangolin detections.  
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Probability of occupancy for both S. gigantea and P. tricuspis declined with increasing elevation 247 

Figure 2. Model-averaged detection and occupancy estimates for Sunda pangolin Manis javanica, white-

bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea based on environmental covariates 

presented in candidate models (ΔAICc ≤ 6). Error bars represent 95% confidence intervals. Values above error 

bars indicate the percentage of candidate models in which each covariate was present. Significant covariates 

are denoted by an asterisk. 
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across a range from 0 – 2395 m asl (Figures 3A and 3B). S. gigantea occupancy also declined with 248 

increasing distance from the nearest river, while that of M. javanica increased (Figures 3C and 3D). 249 

The maximum distance from rivers varied for camera traps within each species range, with no 250 

cameras beyond 6 km for S. gigantea (mean 1.9 km), compared with a maximum of 14 km for M. 251 

javanica (mean 2.3 km). Both P. tricuspis and M. javanica were more likely to use locations outside 252 

of protected areas than within them (Figure 4), although only 12% of camera trap locations 253 
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254 

Figure 3. Probability of occupancy of (A) white-bellied pangolin Phataginus tricuspis and (B) giant pangolin 

Smutsia gigantea based on elevation; (C) Sunda pangolin Manis javanica and (D) giant pangolin based on 

distance to the nearest river; and (E) white-bellied pangolin based on forest cover. All other covariates were 

set to their mean value. Shaded areas represent 95% confidence intervals. 
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for P. tricuspis were located outside of protected areas, compared with an even distribution for M. 255 

javanica. Detectability of P. tricuspis was positively associated with levels of human influence up to a 256 

score of 26 (Figure 5A), where the maximum possible index of human influence is 64 (WCS and 257 

CIESIN, 2005). In addition, both detection and occupancy of P. tricuspis were significantly influenced 258 

by forest cover, but in opposing directions (Figures 3E and 5B). This result should, however, be 259 

treated cautiously, as there were very few records of P. tricuspis in areas of low forest cover (only 260 

3% of camera traps were situated in locations with < 50% forest cover). None of the tested detection 261 

covariates were found to be significant for M. javanica and S. gigantea.  262 

 

Figure 4. Probability of occupancy of (A) Sunda pangolin Manis javanica and (B) white-bellied pangolin 

Phataginus tricuspis based on protected area status. Error bars represent 95% confidence intervals. 

Figure 5. Probability of detection of white-bellied pangolin Phataginus tricuspis based on (A) the Human 

Influence Index (WCS and CIESIN, 2005) and (B) percentage forest cover. Shaded areas represent 95% 

confidence intervals. 
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4. Discussion 263 

As solitary, predominantly nocturnal species, pangolins have historically proven difficult to detect. 264 

Despite a global approach and unprecedented number of trap nights collated in our study, we 265 

recorded a very low number of detections for all species. Nevertheless, we obtained meaningful 266 

results regarding distribution and ecology of the Asian species M. javanica and African species P. 267 

tricuspis and S. gigantea, but gained limited insights into the threats that pangolins face, likely due 268 

to the coarse nature of the data supporting our tested variables. Our findings help inform future 269 

camera trapping efforts for detecting and monitoring pangolins in a given study area, and have 270 

broader implications regarding the feasibility of using camera traps for robust monitoring of 271 

pangolins across their ranges (Table 2).  272 

 273 

4.1 Coarse-scale drivers of pangolin occupancy 274 

Our model results align with current understanding of S. gigantea ecology, indicating decreasing 275 

occupancy with increasing elevation and distance from rivers, as this species is believed to occur 276 

primarily in lowland tropical moist and swamp forest (Waterman et al., 2014a). The contrasting 277 

finding that M. javanica occupancy increases with distance from rivers may reflect the fact that this 278 

more arboreal species uses a much wider range of habitat types, and is thought to have been 279 

pushed out of lowland areas by human disturbance and hunting pressure across much of its range 280 

(see Challender et al., 2014b). Combined with low reported abundances of M. javanica in peat-281 

swamp forests in east and central Kalimantan, Indonesia and Sarawak, Malaysia (Challender et al., 282 

2014b), our results suggest that this species may be less suited to riverine and swamp forest habitats 283 

compared with S. gigantea. It may also be that rivers serve as transport routes for hunters, 284 

particularly in very dense forests without roads, which could lead to increased hunting pressure in 285 

proximal areas and therefore decreased population density and/or detectability. However, M. 286 

javanica has been recorded in wetland habitat in Vietnam in an area of considerable hunting 287 

pressure (Willcox et al., 2017). Further research is required to determine optimal habitat 288 

requirements for this species. 289 

 290 

Across our sample of studies, we found evidence for a higher probability of occupancy outside 291 

protected areas for both M. javanica and P. tricuspis, which contradicted our initial expectations. 292 

Our measure of protection was necessarily coarse (a binary variable of protected status), meaning 293 

that actual levels of protection on the ground may have been poorly captured. Even so, our findings 294 

are supported by previous studies that have demonstrated the ability of multiple pangolin species to 295 

inhabit degraded habitats (M. crassicaudata: Karawita et al., 2018; M. javanica: Wearn et al., 2017; 296 

M. pentadactyla: Pei et al., 2010; Trageser et al., 2017; P. tricuspis: Akpona et al., 2008; S. gigantea: 297 
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Mugume et al., 2015). In Benin, for example, Akpona et al. (2008) detected no significant difference 298 

in the number of P. tricuspis recorded in natural forest and old teak plantations. Similarly, in Borneo, 299 

M. javanica was found at higher local abundances in intensively logged sites compared to old-300 

growth forest, under very low levels of hunting pressure (Wearn et al., 2017). This could be related 301 

to prey availability in disturbed sites, and/or reduced natural predation pressure outside of 302 

protected areas. The fact that some pangolin species appear able to cope with some level of 303 

disturbance and habitat degradation gives hope for their future persistence in increasingly human-304 

dominated environments. However, we stress that our results do not mean that protection 305 

measures are not needed; nor do they indicate that pangolins prefer degraded habitat over intact 306 

habitat. In order to test these hypotheses, a sampling design with matched treatment replicates, or 307 

better fine-scale covariates, would be needed, and is highly recommended for future studies. 308 

 309 

Despite the well-documented impacts that hunting has on local pangolin populations (see 310 

Challender et al., 2014b), none of the modelled species showed an association between occupancy 311 

and the human influence index. However, it should be noted that there were no camera traps 312 

located in highly disturbed habitats within the range of the African species, with maximum indices 313 

reaching 26 out of a potential 64. More direct measures of hunting pressure are not currently 314 

available at sufficiently large scale, but could aid broad understanding of how pangolins respond to 315 

this threat, including potentially informing us about the levels of offtake that pangolin populations 316 

might be able to withstand. This would require a concerted and coordinated effort across studies in 317 

order to measure hunting pressure in a comparable way. Alternatively, at more local scales or at site 318 

level, hunting data could be used to inform modelling (Ingram et al., 2017). 319 

 320 

4.2 Influencing factors for pangolin detectability 321 

The low detectability of all pangolin species in our dataset is likely to be due to a combination of 322 

factors, including low population densities (especially in the case of exploited populations; Willcox et 323 

al., 2019); sub-optimal placement, operation and suitability of camera traps for detecting pangolins 324 

(Apps & McNutt, 2018); the arboreal and/or burrowing behaviours of pangolins (which reduces their 325 

availability for detection by ground-based cameras) (Challender et al., in prep; Kingdon & Hoffman, 326 

2013); and perhaps relatively slow movement rates (meaning that cameras are encountered 327 

infrequently) (Hofmeester et al., 2019). Human influence and forest cover were found to affect 328 

detectability only for P. tricuspis. Probability of detection was higher for this species in locations 329 

affected by greater human influence, perhaps because pangolins move further, spend more time on 330 

the ground, and/or occur at higher density in disturbed areas, thereby triggering cameras more 331 

frequently. Detectability was also higher in locations with more forest cover, possibly due to reduced 332 
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understorey vegetation density (and therefore larger camera detection zones) in such habitats. 333 

Detectability was not found to vary according to the protection status of a location.  334 

 335 

Although the data presented here are extensive, they are restricted by the limits of the contact 336 

network of the authors, and by the response rate to our data requests. They therefore do not 337 

provide full coverage of the possible range of the eight pangolin species, nor constitute a complete 338 

representation of camera trap surveys that took place within known pangolin distributions between 339 

2010 and 2016. Due to the scarcity of pangolin records in our final dataset, we were only able to fit 340 

relatively simple occupancy models with few variables, limiting our ability to fully account for 341 

heterogeneity in detection (likely causing a negative bias in our occupancy estimates) and allowing 342 

us to test only a narrow range of hypotheses about the potential drivers of pangolin occurrence. In 343 

addition, we were constrained to use coarse-scale global variables due to the lack of standardised 344 

and ecologically-relevant variables collected across our contributed data, and not all variables were 345 

found in all combinations. These are common problems when using data from many disparate 346 

studies, each using different methods (e.g. Scotson et al., 2017a). Heterogeneity could be reduced 347 

and better accounted for with greater consistency across camera trap studies in data collection and 348 

recording protocols (Scotson et al., 2017b), which would also facilitate much greater ease of data 349 

sharing for large-scale analyses. It might be possible to increase model precision by ‘borrowing’ 350 

information about detectability from other species recorded in the same studies, using a Bayesian 351 

hierarchical modelling approach (Royle & Dorazio, 2008). However, this multi-species approach may 352 

involve trading off accuracy in order to gain increased precision if species do not form a coherent 353 

ecological group that can be modelled together (Dorazio et al., 2011). 354 

 355 

4.3 Implications for pangolin detection and monitoring using camera traps 356 

Camera traps might conceivably be used to a) detect pangolins, i.e. confirm their presence in a study 357 

area, and b) monitor pangolins over space or time, i.e. by modelling their occupancy or density. 358 

Studies in our dataset successfully detected pangolins, demonstrating that camera traps can be 359 

useful, even when the focus of surveys might be on other species. However, our results suggest that 360 

moderately large sampling efforts are required to detect pangolins. Modelled detection probabilities 361 

for the three species suggest that minimum sampling efforts required to ensure a 90-95% chance 362 

(using a simple binomial model) of detecting P. tricuspis, S. gigantea and M. javanica if present are 363 

446-580, 288-375, and 457-594 camera trap nights, respectively. As an example, this could be 364 

achieved using 20 camera traps, each deployed for 30 nights. 365 

 366 



19 

Our results suggest that monitoring pangolins over space or time remains very challenging with 367 

camera traps. At coarse scales, we have shown that it is possible to monitor pangolin occupancy 368 

across space. With better, fine-scale variables that capture the likely drivers of pangolin occurrence 369 

(in particular hunting and habitat variables), as well as methodological standardisation across studies 370 

(for example, as implemented by TEAM Network; Jansen et al., 2014), this approach has the 371 

potential to further inform our knowledge of pangolin ecology and their conservation. However, 372 

within a single study area, it seems that monitoring pangolins over space or time is unlikely to 373 

succeed in most cases, at least using commonly-applied methods and current camera trap 374 

technology. Following the occupancy survey design recommendations in Mackenzie & Royle (2005) 375 

and Guillera-Arroita et al. (2010), we deduced that a minimum of 130 locations would need to be 376 

camera-trapped for six months for S. gigantea, or 10 months for P. tricuspis and M. javanica in order 377 

to obtain a reasonably precise occupancy estimate (with a standard error < 0.075) for a ‘depleted’ 378 

pangolin population (occupancy = 0.1) (Supplementary Material, Appendix S2). For an ‘unexploited’ 379 

pangolin population (occupancy = 0.5), the same approach yields a recommendation with fewer 380 

required locations (100), monitored for the same time period (Appendix S2). Sampling for such 381 

extended periods risks violating the closure assumption of occupancy modelling, and is likely to be 382 

prohibitively costly or logistically difficult (although it is being done in some sites, for example to 383 

monitor large felids). In addition, if the modelling of occupancy as a function of covariates is desired, 384 

an even larger sample of locations will likely be required. 385 

 386 

Although Bayesian approaches to leveraging information on detectability from other detected 387 

species can help with the low number of detections (e.g. Wearn et al., 2017), model estimates will 388 

likely remain imprecise. In addition, occupancy does not provide information on abundance, and 389 

other statistical methods would be needed to infer this. To date, no camera trap studies have 390 

estimated pangolin density, although methods do in principle exist for species such as pangolins that 391 

are not individually recognisable (Moeller et al., 2018; Howe et al., 2017; Rowcliffe et al., 2008). In 392 

practice, pangolin density might be more efficiently obtained using other methods (e.g. non-invasive 393 

genetic methods; Challender et al., in prep.). 394 

 395 

Developments in camera trap methods and technology have the potential to improve the feasibility 396 

of monitoring pangolins at the site level. The sampling effort recommendations provided above are 397 

based on studies in which pangolins were not generally the focus, meaning that the detection 398 

probabilities could potentially be improved by targeting pangolin tracks, feeding signs, or burrows. 399 

For example, in a recent study of S. gigantea at a site in Uganda, naïve detection probabilities were 400 

increased tenfold by transitioning from systematic grid-based surveys to targeted camera trapping 401 
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focusing on burrows, tracks and feeding signs located using reconnaissance surveys (N. Matthews, S. 402 

Isoke & S. Nixon, unpubl. data). The increased volume of records is in turn helping to facilitate 403 

improved understanding of S. gigantea ecology to further refine targeted camera trapping methods 404 

in future. A deeper understanding of the ecology of all pangolin species, including home range size, 405 

habitat use, speed of movement, proportion of time spent on the ground (for semi-arboreal 406 

species), and microhabitat preferences could contribute significantly towards optimisation of 407 

camera trap placement strategies (Hofmeester et al., 2019). In addition, camera trap technology is 408 

constantly improving in terms of battery life, memory capacity and cost (Glover-Kapfer et al., 2019), 409 

which increases the feasibility of achieving the very high sampling efforts required for monitoring 410 

pangolins. The labour costs of processing large amounts of camera trap data are also decreasing 411 

with the advent of new citizen-science and machine learning approaches (e.g. Willi et al., 2018). We 412 

present a summary of recommendations for the use of camera trapping in pangolin detection and 413 

monitoring in Table 2. Finally, camera trap images have other benefits beyond monitoring, including 414 

their value as tools for outreach, engagement and law enforcement (Steenweg et al., 2017; Hossain 415 

et al., 2016).  416 

 417 

5. Conclusions 418 

Our results suggest that standard camera trapping protocols for generic biodiversity surveys and/or 419 

targeting other medium to large mammals are insufficient to reliably estimate pangolin occupancy 420 

for a single study area. Pangolins were nevertheless detected in multiple studies in our dataset, and 421 

we were able to uncover relationships between pangolin occurrence and landscape variables on a 422 

broad scale. Should a coordinated approach to future camera trapping surveys bring about 423 

standardised methods and recording of covariate data, future large-scale, cross-study analyses such 424 

as this could deliver greater insights into pangolin ecology. On an individual survey scale, refined 425 

methods could improve the utility of camera trapping for monitoring pangolin occupancy, but 426 

abundance estimation remains to be tested, and might be better achieved with alternative methods. 427 

Future technological and methodological advances may facilitate the large sampling efforts required 428 

to obtain meaningful pangolin population estimates from camera trapping surveys in a cost-effective 429 

manner.  430 
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Table 2. Recommended current and potential uses of camera traps in pangolin detection and spatial or 
temporal monitoring. 

Study aim Are camera traps suitable?  Justification 

 Currently Potentially in 

future 

 

Detection  Y Y Detection of P. tricuspis, S. gigantea and M. javanica 

has been achieved across multiple sites. It is feasible to 

ensure 90-95% confidence of detecting these species 

with moderate sampling effort, and may be feasible for 

other pangolin species with moderate or high sampling 

efforts. For P. tetradactyla, this would likely involve at 

least some arboreal camera trapping. 

Large-scale modelling of 

pangolin distribution 

Y Y Large-scale modelling of pangolin occupancy has been 

possible for P. tricuspis, S. gigantea and M. javanica, 

although better standardisation of methods and 

covariates would improve the inferences that can be 

made. This could also be possible for other pangolin 

species through more widespread collaborative sharing 

of datasets. 

Monitoring pangolin 

occupancy in a study area with 

pangolins recorded alongside 

a suite of other species 

N Y Prohibitively high sampling efforts are required for 

robust monitoring of pangolin occupancy at the study 

area scale using prevailing methods. This is likely the 

case even for the most detectable species, S. gigantea, 

and even in the case of a population with relatively 

high abundance. However, it may be possible in future 

as camera traps become more efficient per unit of 

labour (thereby increasing detection probabilities) and 

surveys become more ambitious in scale (i.e. involving 

many more stations within a study area). 

Monitoring pangolin 

occupancy in a study area with 

targeted camera placement 

for pangolins 

Y? Y? Higher detectability of pangolins may be achieved using 

methods specifically targeted at pangolins, with 

location and duration of camera trapping informed by 

overall understanding of the ecology of each species 

and identification of potential sites of activity using 

reconnaissance surveys. This might make pangolin 

monitoring more feasible with moderate sampling 

efforts. We acknowledge that current understanding of 

pangolin ecology, and specifically microhabitat use, is a 

key knowledge gap preventing immediate application.  

Monitoring density of 

pangolins in a study area 

Y? Y? It might be possible to estimate pangolin density with 

camera traps in future, assuming that developments in 

camera trap technology lead to 1) higher detectability 

and 2) greater sampling intensities per study (i.e. more 

stations, sampled for longer periods).  
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