317 research outputs found

    Assessment of metabolic phenotypic variability in children's urine using 1H NMR spectroscopy

    Get PDF
    The application of metabolic phenotyping in clinical and epidemiological studies is limited by a poor understanding of inter-individual, intra-individual and temporal variability in metabolic phenotypes. Using 1H NMR spectroscopy we characterised short-term variability in urinary metabolites measured from 20 children aged 8-9 years old. Daily spot morning, night-time and pooled (50:50 morning and night-time) urine samples across six days (18 samples per child) were analysed, and 44 metabolites quantified. Intraclass correlation coefficients (ICC) and mixed effect models were applied to assess the reproducibility and biological variance of metabolic phenotypes. Excellent analytical reproducibility and precision was demonstrated for the 1H NMR spectroscopic platform (median CV 7.2%). Pooled samples captured the best inter-individual variability with an ICC of 0.40 (median). Trimethylamine, N-acetyl neuraminic acid, 3-hydroxyisobutyrate, 3-hydroxybutyrate/3-aminoisobutyrate, tyrosine, valine and 3-hydroxyisovalerate exhibited the highest stability with over 50% of variance specific to the child. The pooled sample was shown to capture the most inter-individual variance in the metabolic phenotype, which is of importance for molecular epidemiology study design. A substantial proportion of the variation in the urinary metabolome of children is specific to the individual, underlining the potential of such data to inform clinical and exposome studies conducted early in life

    In utero and childhood exposure to tobacco smoke and multi-layer molecular signatures in children

    Get PDF
    Background The adverse health effects of early life exposure to tobacco smoking have been widely reported. In spite of this, the underlying molecular mechanisms of in utero and postnatal exposure to tobacco smoke are only partially understood. Here, we aimed to identify multi-layer molecular signatures associated with exposure to tobacco smoke in these two exposure windows. Methods We investigated the associations of maternal smoking during pregnancy and childhood secondhand smoke (SHS) exposure with molecular features measured in 1203 European children (mean age 8.1 years) from the Human Early Life Exposome (HELIX) project. Molecular features, covering 4 layers, included blood DNA methylation and gene and miRNA transcription, plasma proteins, and sera and urinary metabolites. Results Maternal smoking during pregnancy was associated with DNA methylation changes at 18 loci in child blood. DNA methylation at 5 of these loci was related to expression of the nearby genes. However, the expression of these genes themselves was only weakly associated with maternal smoking. Conversely, childhood SHS was not associated with blood DNA methylation or transcription patterns, but with reduced levels of several serum metabolites and with increased plasma PAI1 (plasminogen activator inhibitor-1), a protein that inhibits fibrinolysis. Some of the in utero and childhood smoking-related molecular marks showed dose-response trends, with stronger effects with higher dose or longer duration of the exposure. Conclusion In this first study covering multi-layer molecular features, pregnancy and childhood exposure to tobacco smoke were associated with distinct molecular phenotypes in children. The persistent and dose-dependent changes in the methylome make CpGs good candidates to develop biomarkers of past exposure. Moreover, compared to methylation, the weak association of maternal smoking in pregnancy with gene expression suggests different reversal rates and a methylation-based memory to past exposures. Finally, certain metabolites and protein markers evidenced potential early biological effects of postnatal SHS, such as fibrinolysis

    Comparison of performance of the Assessment of Spondyloarthritis International Society, the European Spondyloarthropathy Study Group and the modified New York criteria in a cohort of Chinese patients with spondyloarthritis

    Get PDF
    Early diagnosis of spondyloarthritis (SpA) is essential as anti-tumor necrosis factor therapy can achieve significant symptomatic relief and control of disease activity. This study aims to compare the clinical characteristics, disease activity, and functional status of a Chinese cohort of SpA patients who were re-classified into ankylosing spondylitis (AS) patients fulfilling the modified New York (MNY) criteria, those with undifferentiated SpA (USpA) fulfilling the European Spondyloarthropathy Study Group (ESSG) classification criteria only (USpA/ESSG) and those who fulfill Assessment of SpondyloArthritis International Society (ASAS) only (USpA/ASAS). Disease activity was evaluated by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), severity of morning stiffness, patient global assessment, and C-reactive protein. Functional status was evaluated by Bath Ankylosing Spondylitis Functional Index (BASFI), modified Schober index, and dimension of chest expansion. One hundred and twenty-eight patients with disease duration of 16.3 ± 10.4 years were recruited. Patients in USpA/ESSG and USpA/ASAS were significantly younger (p = 0.01), had shorter disease duration (p < 0.01), and lower BASFI (p = 0.03) than established AS patients. All three groups have active disease with comparable BASDAI >3. BASFI correlated inversely with dimension of chest expansion and negatively modified Schober index in AS patients (p < 0.01) and modestly with BASDAI (r = 0.25, p < 0.01). BASFI correlated moderately with BASDAI in USpA/ESSG (r = 0.61, p < 0.01) but not with chest expansion or modified Schober index. Compared with established AS patients recognized by MNY criteria, patients fulfilling USpA defined by ESSG or ASAS criteria had earlier disease, as active disease and less irreversible functional deficit

    Improving medication adherence in diabetes type 2 patients through Real Time Medication Monitoring: a Randomised Controlled Trial to evaluate the effect of monitoring patients' medication use combined with short message service (SMS) reminders

    Get PDF
    Contains fulltext : 97026.pdf (publisher's version ) (Open Access)BACKGROUND: Innovative approaches are needed to support patients' adherence to drug therapy. The Real Time Medication Monitoring (RTMM) system offers real time monitoring of patients' medication use combined with short message service (SMS) reminders if patients forget to take their medication. This combination of monitoring and tailored reminders provides opportunities to improve adherence. This article describes the design of an intervention study aimed at evaluating the effect of RTMM on adherence to oral antidiabetics. METHODS/DESIGN: Randomised Controlled Trial (RCT) with two intervention arms and one control arm involving diabetes type 2 patients with suboptimal levels of adherence to oral antidiabetics (less than 80% based on pharmacy refill data). Patients in the first intervention arm use RTMM including SMS reminders and a personal webpage where they can monitor their medication use. Patients in the second intervention arm use RTMM without SMS reminders or webpage access. Patients in the control arm are not exposed to any intervention. Patients are randomly assigned to one of the three arms. The intervention lasts for six months. Pharmacy refill data of all patients are available from 11 months before, until 11 months after the start of the intervention. Primary outcome measure is adherence to oral antidiabetics calculated from: 1) data collected with RTMM, as a percentage of medication taken as prescribed, and as percentage of medication taken within the correct time interval, 2) refill data, taking the number of days for which oral antidiabetics are dispensed during the study period divided by the total number of days of the study period. Differences in adherence between the intervention groups and control group are studied using refill data. Differences in adherence between the two intervention groups are studied using RTMM data. DISCUSSION: The intervention described in this article consists of providing RTMM to patients with suboptimal adherence levels. This system combines real time monitoring of medication use with SMS reminders if medication is forgotten. If RTMM proves to be effective, it can be considered for use in various patient populations to support patients with their medication use and improve their adherence. TRIAL REGISTRATION: Netherlands Trial Register NTR1882

    Genome-Wide Association Study in Asian Populations Identifies Variants in ETS1 and WDFY4 Associated with Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus is a complex and potentially fatal autoimmune disease, characterized by autoantibody production and multi-organ damage. By a genome-wide association study (320 patients and 1,500 controls) and subsequent replication altogether involving a total of 3,300 Asian SLE patients from Hong Kong, Mainland China, and Thailand, as well as 4,200 ethnically and geographically matched controls, genetic variants in ETS1 and WDFY4 were found to be associated with SLE (ETS1: rs1128334, P = 2.33×10−11, OR = 1.29; WDFY4: rs7097397, P = 8.15×10−12, OR = 1.30). ETS1 encodes for a transcription factor known to be involved in a wide range of immune functions, including Th17 cell development and terminal differentiation of B lymphocytes. SNP rs1128334 is located in the 3′-UTR of ETS1, and allelic expression analysis from peripheral blood mononuclear cells showed significantly lower expression level from the risk allele. WDFY4 is a conserved protein with unknown function, but is predominantly expressed in primary and secondary immune tissues, and rs7097397 in WDFY4 changes an arginine residue to glutamine (R1816Q) in this protein. Our study also confirmed association of the HLA locus, STAT4, TNFSF4, BLK, BANK1, IRF5, and TNFAIP3 with SLE in Asians. These new genetic findings may help us to gain a better understanding of the disease and the functions of the genes involved

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Metabolic profiles of socio-economic position: a multi-cohort analysis

    Get PDF
    Background: Low socio-economic position (SEP) is a risk factor for multiple health outcomes, but its molecular imprints in the body remain unclear.Methods: We examined SEP as a determinant of serum nuclear magnetic resonance metabolic profiles in ∼30 000 adults and 4000 children across 10 UK and Finnish cohort studies.Results: In risk-factor-adjusted analysis of 233 metabolic measures, low educational attainment was associated with 37 measures including higher levels of triglycerides in small high-density lipoproteins (HDL) and lower levels of docosahexaenoic acid (DHA), omega-3 fatty acids, apolipoprotein A1, large and very large HDL particles (including levels of their respective lipid constituents) and cholesterol measures across different density lipoproteins. Among adults whose father worked in manual occupations, associations with apolipoprotein A1, large and very large HDL particles and HDL-2 cholesterol remained after adjustment for SEP in later life. Among manual workers, levels of glutamine were higher compared with non-manual workers. All three indicators of low SEP were associated with lower DHA, omega-3 fatty acids and HDL diameter. At all ages, children of manual workers had lower levels of DHA as a proportion of total fatty acids.Conclusions: Our work indicates that social and economic factors have a measurable impact on human physiology. Lower SEP was independently associated with a generally unfavourable metabolic profile, consistent across ages and cohorts. The metabolites we found to be associated with SEP, including DHA, are known to predict cardiovascular disease and cognitive decline in later life and may contribute to health inequalities.Keywords: Socio-economic status; education; life course; lipoproteins; metabolomics; metabonomic; occupation.</p
    corecore