46 research outputs found

    Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions

    Get PDF
    The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e ≈ 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V ≈ 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the “compact layer” and “shear plane” effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.National Science Foundation (U.S.) (contract DMS-0707641

    Bubble growth in a variable diffusion coefficient liquid

    No full text
    10.1016/S1385-8947(97)00099-5Chemical Engineering Journal69121-25CMEJ

    Measurement of decimeter-wave absorption in the atmosphere

    No full text

    Nonresonance absorption of radio waves in molecular oxygen

    No full text

    Structural basis of denuded glycan recognition by SPOR domains in bacterial cell division

    No full text
    13 pags., 9 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0SPOR domains are widely present in bacterial proteins that recognize cell-wall peptidoglycan strands stripped of the peptide stems. This type of peptidoglycan is enriched in the septal ring as a product of catalysis by cell-wall amidases that participate in the separation of daughter cells during cell division. Here, we document binding of synthetic denuded glycan ligands to the SPOR domain of the lytic transglycosylase RlpA from Pseudomonas aeruginosa (SPOR-RlpA) by mass spectrometry and structural analyses, and demonstrate that indeed the presence of peptide stems in the peptidoglycan abrogates binding. The crystal structures of the SPOR domain, in the apo state and in complex with different synthetic glycan ligands, provide insights into the molecular basis for recognition and delineate a conserved pattern in other SPOR domains. The biological and structural observations presented here are followed up by molecular-dynamics simulations and by exploration of the effect on binding of distinct peptidoglycan modifications.The work in Spain was supported by grants from the Spanish Ministry of Science, Innovation and Universities (BFU2014-59389-P and BFU2017-90030-P to JAH) and in the USA by grants from the NIH (GM131685 and GM61629 to SM). D.A.D. is a Fellow of the Chemistry-Biochemistry-Biology Interface Program (NIH Training Grant T32GM075762) and a Fellow of the ECK Institute of Global Health at the University of Notre Dame. We thank Dr. We thank the staff from ALBA synchrotron facility (Barcelona, Spain) for help during crystallographic data collection. We thank the Center for Research Computing of the University of Notre Dame for the computing resources
    corecore