57 research outputs found

    Sex and gender differences in tempos of ageing of Moscow population and their biosocial meaning: a pilot study.

    Get PDF
    The aim of the present paper is to study sex and gender differences in the biological age and tempos of ageing in men and women of Moscow population. The study is based on the integrated medical-anthropological survey of 69 males from 41 to 92 years of age and 157 females from 41 to 97 years of age, inhabitants of Moscow, examined in 2012. The program included the following: anthropometric measurements (height and weight, waist and hip circumferences); the whole-body impedance was measured on the right hand side of the body using the bioimpedance meter ABC-01 ‘Medas’ (SRC Medas, Russia); functional characteristics of cardiovascular systems: systolic and diastolic blood pressure (mmHg), heart rate (beats per min); hand grip strength for right and left hands measured with the hand dynamometer; estimation of biological age was performed with the software “Diagnostics of Aging. BioAge”, which was developed by the National Centre of Gerontology (Moscow) and included the set of functional biomarkers of cardiovascular and respiratory systems; questionnaire: type of work (mental or physical labour), number of children per family, age at the birth of the first child, father’s and mother’s longevity. According to the results of this study, in Moscow males there was a tendency to higher intensity of ageing processes as compared to Moscow females. Tempos of age changes in several morphofunctional characteristics (systolic blood pressure, hearing acuity and hand grip strength) were different for both sexes and higher in males. In men there was a higher frequency of individuals with accelerated tempos of ageing (20% vs 12% in women). Higher tempos of ageing in men were much more expressed after 60 years of age, which could be explained by different gender roles and the influence of socioeconomic factors. Among socioeconomic factors, the most important were the following ones: type of work and number of children per family. Slow tempos of aging were more typical for men and women, who most of their life were involved in mental labour and had only one child

    Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions

    Get PDF
    High latitude wetlands are important for understanding climate change risks because these environments sink carbon and emit methane. Fine scale heterogeneity of wetland landscapes pose challenges for producing the greenhouse gas flux inventories based on point observations. To reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the taiga zone of West Siberia on a scene-by-scene basis using a supervised classification of Landsat imagery. The training dataset was based on high-resolution images and field data that were collected at 28 test areas. Classification scheme was aimed at methane inventory applications and included 7 wetland ecosystem types composing 9 wetland complexes in different proportions. Accuracy assessment based on 1082 validation polygons of 10 × 10 pixels indicated an overall map accuracy of 79 %. The total area of the wetlands and water bodies was estimated to be 52.4 Mha or 4-12 % of the global wetland area. Ridge-hollow complexes prevail in WS's taiga, occupying 33 % of the domain, followed by forested bogs or "ryams" (23 %), ridge-hollow-lake complexes (16 %), open fens (8 %), palsa complexes (7 %), open bogs (5 %), patterned fens (4 %), and swamps (4 %). Various oligotrophic environments are dominant among the wetland ecosystems, while fens cover only 14 % of the area. Because of the significant update in the wetland ecosystem coverage, a considerable revaluation of the total CH4 emissions from the entire region is expected. A new Landsat-based map of WS's taiga wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland datasets in high latitudes

    Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Get PDF
    Very few studies of ecosystem-atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2) and energy budgets in a typical bog of the western Siberian middle taiga based on May-August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pinecovered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to CO2 gCm(-2) for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.Peer reviewe

    Ecology and management history drive spatial genetic structure in Scots pine

    Get PDF
    Forest management practices that remove trees from stands can promote substantial changes in the distribution of genetic diversity within and among populations at multiple spatial scales. In small and isolated populations, elevated inbreeding levels might reduce fitness of subsequent generations and threaten forest resilience in the long term. Comparing fine-scale spatial genetic structure (SGS) between life stages (e.g. adult and juvenile cohorts) can identify when populations have undergone disturbance, even in species with long generation times. Here, we studied the effects of historical and contemporary forest management, characterized by intense felling and natural regeneration respectively, on genetic diversity and fine-scale SGS in adult and juvenile cohorts. We examined fragmented Scots pine (Pinus sylvestris L.) stands in the Scottish Highlands, and compared them with a remote, unmanaged stand. A total of 777 trees were genotyped using 12 nuclear microsatellite markers. No difference was identified in allelic richness or gene diversity among stands or life stages, suggesting that historical and contemporary management have not impacted levels of genetic variation. However, management appears to have changed the spatial distribution of genetic variation. Adult genotypes from managed stands were more spatially structured than in the unmanaged stand, a difference mediated by contrasts in tree density, degree of fragmentation of stands at the time of establishment and rate of gap creation. Surprisingly, juveniles were less spatially structured than adults in the managed stands, suggesting an historical erosion of the structure of the adult cohort but contemporary recovery to natural dynamics, and indicating a high capacity of the species to recover after disturbance. Here we showed that using the spatial component of genetic diversity can help to detect both historical and contemporary effects of disturbance in tree populations. Evaluation of successional change is important to adequately detect early responses of tree populations to forest management practices. Overall, our study suggests that combining sustainable management with forest conservation practices that ensure larger effective population sizes is key to successfully maintaining genetic diversity in Scots pine

    Hydrological dynamics and fire history of the last 1300years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive

    No full text
    International audienceSiberian peatlands provide records of past changes in the continental climate of Eurasia. We analyzed a core from Mukhrino mire in western Siberia to reconstruct environmental change in this region over the last 1300 years. The pollen analysis revealed little variation of local pine-birch forests. A testate amoebae transfer function was used to generate a quantitative water-table reconstruction; pollen, plant macrofossils, and charcoal were analyzed to reconstruct changes in vegetation and fire activity. The study revealed that Mukhrino mire was wet until the Little Ice Age (LIA), when drought was recorded. Dry conditions during the LIA are consistent with other studies from central and eastern Europe, and with the pattern of carbon accumulation across the Northern Hemisphere. A significant increase in fire activity between ca. AD 1975 and 1990 may be associated with the development of the nearby city of Khanty-Mansiysk, as well as with the prevailing positive Arctic Oscillation

    Vocal group signatures in the goitred gazelle Gazella subgutturosa

    Get PDF
    Abstract The potential for vocal modification in mammals has recently been of great interest. This study focuses on the potential for vocal matching in juvenile and adolescent goitred gazelles Gazella subgutturosa that were group housed as part of an animal management programme. Two groups of animals (16 and 19 unrelated individuals, respectively) were recorded at two different ages, juvenile and adolescent, regarding 20-25 calls per individual per age; each group was evaluated in a separate year. Vocal similarity of group members compared to nonmembers was prominent in both ages, but higher in juveniles. Individual identity was prominent in both ages and higher in adolescents. The more prominent vocal indicators of group membership in juveniles could be related to their higher social dependence compared to adolescents. The more individualized calls of adolescents could be a mechanistic consequence of more stable growth at older age. Our results suggest vocal plasticity of goitred gazelles under social influences. These data add to recent evidence about domestic goat kids Capra hircus, suggesting that vocalizations of species that are not capable of imitation are more flexible than previously thought

    The Multiscale Monitoring of Peatland Ecosystem Carbon Cycling in the Middle Taiga Zone of Western Siberia: The Mukhrino Bog Case Study

    Get PDF
    The peatlands of the West Siberian Lowlands, comprising the largest pristine peatland area of the world, have not previously been covered by continuous measurement and monitoring programs. The response of peatlands to climate change occurs over several decades. This paper summarizes the results of peatland carbon balance studies collected over ten years at the Mukhrino field station (Mukhrino FS, MFS) operating in the Middle Taiga Zone of Western Siberia. A multiscale approach was applied for the investigations of peatland carbon cycling. Carbon dioxide fluxes at the local scale studied using the chamber method showed net accumulation with rates from 110, to 57.8 gC m−2 at the Sphagnum hollow site. Net CO2 fluxes at the pine-dwarf shrubs-Sphagnum ridge varied from negative (−32.1 gC m−2 in 2019) to positive (13.4 gC m−2 in 2017). The cumulative May-August net ecosystem exchange (NEE) from eddy-covariance (EC) measurements at the ecosystem scale was −202 gC m−2 in 2015, due to the impact of photosynthesis of pine trees which was not registered by the chamber method. The net annual accumulation of carbon in the live part of mosses was estimated at 24–190 gC m−2 depending on the Sphagnum moss species. Long-term carbon accumulation rates obtained by radiocarbon analysis ranged from 28.5 to 57.2 gC m−2 yr−1, with local extremes of up to 176.2 gC m−2 yr−1. The obtained estimates of various carbon fluxes using EC and chamber methods, the accounting for Sphagnum growth and decomposition, and long-term peat accumulation provided information about the functioning of the peatland ecosystems at different spatial and temporal scales. Multiscale carbon flux monitoring reveals useful new information for forecasting the response of northern peatland carbon cycles to climatic changes

    Ground-based station network in Arctic and Subarctic Eurasia : an overview

    Get PDF
    The international Pan-Eurasian Experiment (PEEX) program addresses the full spectrum of problems related to climate change in Eurasian Northern latitudes. All PEEX activities rely on the bulk of high-quality observational data provided by the ground and marine stations, remote sensing and satellite tools. So far, no coordinated station network has ever existed in Eurasia, moreover, the current scope of relevant research remains largely unknown as no prior assessment has been done to date. This paper makes the first attempt to overview the existing ground station pool in the Arctic-Boreal region with the focus on Russia. The geographical, climatic and ecosystem representativeness of the current stations is discussed, the gaps are identified and tentative station network developments are proposed.Peer reviewe

    Tree encroachment may lead to functionally-significant changes in peatland testate amoeba communities

    Get PDF
    Climate change is likely to cause increased tree recruitment on open peatlands but we currently have little idea what consequences this vegetation change may have below-ground. Here we use transects across forested to open bog ecotones at three Russian peatland complexes to assess potential changes in the most abundant group of peatland protists - the testate amoebae. We show that the testate amoeba communities of forested and open bog are markedly different with a very abrupt boundary at, or near, the vegetation ecotone. Changes along our transects suggest that tree encroachment may reduce the trophic level of testate amoeba communities and reduce the contribution of mixotrophic testate amoebae to primary production. Our study strongly suggests that increased tree recruitment on open peatlands will have important consequences for both microbial biodiversity and microbially-mediated ecosystem processes
    corecore