38 research outputs found
The expression of stlA in Photorhabdus luminescens is controlled by nutrient limitation
Photorhabdus is a genus of Gram-negative entomopathogenic bacteria that also maintain a mutualistic association with nematodes from the family Heterorhabditis. Photorhabdus has an extensive secondary metabolism that is required for the interaction between the bacteria and the nematode. A major component of this secondary metabolism is a stilbene molecule, called ST. The first step in ST biosynthesis is the non-oxidative deamination of phenylalanine resulting in the production of cinnamic acid. This reaction is catalyzed by phenylalanine-ammonium lyase, an enzyme encoded by the stlA gene. In this study we show, using a stlA-gfp transcriptional fusion, that the expression of stlA is regulated by nutrient limitation through a regulatory network that involves at least 3 regulators. We show that TyrR, a LysR-type transcriptional regulator that regulates gene expression in response to aromatic amino acids in E. coli, is absolutely required for stlA expression. We also show that stlA expression is modulated by σS and Lrp, regulators that are implicated in the regulation of the response to nutrient limitation in other bacteria. This work is the first that describes pathway-specific regulation of secondary metabolism in Photorhabdus and, therefore, our study provides an initial insight into the complex regulatory network that controls secondary metabolism, and therefore mutualism, in this model organism
Nonselective Bottlenecks Control the Divergence and Diversification of Phase-Variable Bacterial Populations
Phase variation occurs in many pathogenic and commensal bacteria and is a major generator of genetic variability. A putative advantage of phase variation is to counter reductions in variability imposed by nonselective bottlenecks during transmission. Genomes of Campylobacter jejuni, a widespread food-borne pathogen, contain multiple phase-variable loci whose rapid, stochastic variation is generated by hypermutable simple sequence repeat tracts. These loci can occupy a vast number of combinatorial expression states (phasotypes) enabling populations to rapidly access phenotypic diversity. The imposition of nonselective bottlenecks can perturb the relative frequencies of phasotypes, changing both within-population diversity and divergence from the initial population. Using both in vitro testing of C. jejuni populations and a simple stochastic simulation of phasotype change, we observed that single-cell bottlenecks produce output populations of low diversity but with bimodal patterns of either high or low divergence. Conversely, large bottlenecks allow divergence only by accumulation of diversity, while interpolation between these extremes is observed in intermediary bottlenecks. These patterns are sensitive to the genetic diversity of initial populations but stable over a range of mutation rates and number of loci. The qualitative similarities of experimental and in silico modeling indicate that the observed patterns are robust and applicable to other systems where localized hypermutation is a defining feature. We conclude that while phase variation will maintain bacterial population diversity in the face of intermediate bottlenecks, narrow transmission-associated bottlenecks could produce host-to-host variation in bacterial phenotypes and hence stochastic variation in colonization and disease outcomes
High throughput method for analysis of repeat number for 28 phase variable loci of C. jejuni strain NCTC11168
Mutations in simple sequence repeat tracts are a major mechanism of phase variation in several bacterial species including Campylobacter jejuni. Changes in repeat number of tracts located within the reading frame can produce a high frequency of reversible switches in gene expression between ON and OFF states. The genome of C. jejuni strain NCTC11168 contains 29 loci with polyG/polyC tracts of seven or more repeats. This protocol outlines a method for rapidly determining ON/OFF states of these 28 phase-variable loci in a large number of individual colonies. The method combines a series of multiplex PCR assays with a GeneScan assay and automated extraction of tract length, repeat number and expression state. This high throughput, multiplex assay has utility for detecting shifts in phase variation states within and between populations over time and for exploring the effects of phase variation on adaptation to differing selective pressures. An important output of this assay is combinatorial expression states that cannot be determined by other methods. This method can be adapted to analysis of phase variation in other C. jejuni strains and in a diverse range of bacterial species
Data from: High throughput method for analysis of repeat number for 28 phase variable loci of Campylobacter jejuni strain NCTC11168
Mutations in simple sequence repeat tracts are a major mechanism of phase variation in several bacterial species including Campylobacter jejuni. Changes in repeat number of tracts located within the reading frame can produce a high frequency of reversible switches in gene expression between ON and OFF states. The genome of C. jejuni strain NCTC11168 contains 29 loci with polyG/polyC tracts of seven or more repeats. This protocol outlines a method—the 28-locus-CJ11168 PV-analysis assay—for rapidly determining ON/OFF states of 28 of these phase-variable loci in a large number of individual colonies from C. jejuni strain NCTC11168. The method combines a series of multiplex PCR assays with a fragment analysis assay and automated extraction of fragment length, repeat number and expression state. This high throughput, multiplex assay has utility for detecting shifts in phase variation states within and between populations over time and for exploring the effects of phase variation on adaptation to differing selective pressures. Application of this method to analysis of the 28 polyG/polyC tracts in 90 C. jejuni colonies detected a 2.5-fold increase in slippage products as tracts lengthened from G8 to G11 but no difference between tracts of similar length indicating that flanking sequence does not influence slippage rates. Comparison of this observed slippage to previously measured mutation rates for G8 and G11 tracts in C. jejuni indicates that PCR amplification of a DNA sample will over-estimate phase variation frequencies by 20-35-fold. An important output of the 28-locus-CJ11168 PV-analysis assay is combinatorial expression states that cannot be determined by other methods. This method can be adapted to analysis of phase variation in other C. jejuni strains and in a diverse range of bacterial species
PSAnalyse_0_99
This folder contains all the files required for running of the program PSAnalys
Data from: Nonselective bottlenecks control the divergence and diversification of phase-variable bacterial populations
Phase variation occurs in many pathogenic and commensal bacteria and is a major generator of genetic variability. A putative advantage of phase variation is to counter reductions in variability imposed by nonselective bottlenecks during transmission. Genomes of Campylobacter jejuni, a widespread food-borne pathogen, contain multiple phase-variable loci whose rapid, stochastic variation is generated by hypermutable simple sequence repeat tracts. These loci can occupy a vast number of combinatorial expression states (phasotypes) enabling populations to rapidly access phenotypic diversity. The imposition of nonselective bottlenecks can perturb the relative frequencies of phasotypes, changing both within-population diversity and divergence from the initial population. Using both in vitro testing of C. jejuni populations and a simple stochastic simulation of phasotype change, we observed that single-cell bottlenecks produce output populations of low diversity but with bimodal patterns of either high or low divergence. Conversely, large bottlenecks allow divergence only by accumulation of diversity, while interpolation between these extremes is observed in intermediary bottlenecks. These patterns are sensitive to the genetic diversity of initial populations but stable over a range of mutation rates and number of loci. The qualitative similarities of experimental and in silico modeling indicate that the observed patterns are robust and applicable to other systems where localized hypermutation is a defining feature. We conclude that while phase variation will maintain bacterial population diversity in the face of intermediate bottlenecks, narrow transmission-associated bottlenecks could produce host-to-host variation in bacterial phenotypes and hence stochastic variation in colonization and disease outcomes
LangoScoley_Control_Sequence_Files
This folder contains the control sequences for the specific variants used for the analyse
A proposed model for the regulation of <i>stlA</i> expression in <i>P. luminescens</i> TTO1.
<p>The expression of <i>stlA</i> is increased in response to nutrient limitation and we have identified 3 nutrient-associated regulators that all affect <i>stlA</i> expression. TyrR is required for <i>stlA</i> expression whilst σ<sup>S</sup> and Lrp are needed for normal levels of <i>stlA</i> expression. Lrp also affects the levels of BCFA in the cell, presumably through a regulatory affect on <i>bkd</i> expression. The BarA/UvrY two-component pathway contributes to the post-transcriptional regulation of <i>stlA</i> expression, as described in the text. ST: 3’-5’-dihydroxy-4-isopropylstilbene; Phe: phenylalanine; CA: cinnamic acid; Leu: leucine; Bkd: branched-chain α-ketoacid dehydrogenase; BCFA: branched-chain fatty acids; IV-CoA: isovaleryl-CoA.</p
Scripts_for_Figure_Preparation
This folder contains the scripts used for preparation of the figures in the mBio paper