434 research outputs found
the growth of brain and muscles in premature neonates: a comparison between antenatal and postnatal periods (infants from birth to 40 days of life)
peer reviewe
Rapid growth and childhood obesity are strongly associated with lysoPC(14:0)
BACKGROUND:
Despite the growing interest in the early-origins-of-later-disease hypothesis, little is known about the metabolic underpinnings linking infant weight gain and childhood obesity.
OBJECTIVE:
To discover biomarkers reflective of weight change in the first 6 months and overweight/obesity at age 6 years via a targeted metabolomics approach.
DESIGN:
This analysis comprised 726 infants from a European multicenter randomized trial (Childhood Obesity Programme, CHOP) for whom plasma blood samples at age 6 months and anthropometric data up to the age of 6 years were available. 'Rapid growth' was defined as a positive difference in weight within the first 6 months of life standardized to WHO growth standards. Weight change was regressed on each of 168 metabolites (acylcarnitines, lysophosphatidylcholines, sphingomyelins, and amino acids). Metabolites significant after Bonferroni's correction were tested as predictors of later overweight/obesity.
RESULTS:
Among the overall 19 significant metabolites, 4 were associated with rapid growth and 15 were associated with a less-than-ideal weight change. After adjusting for feeding group, only the lysophosphatidylcholine LPCaC14:0 remained significantly associated with rapid weight gain (\u3b2 = 0.18). Only LPCaC14:0 at age 6 months was predictive of overweight/obesity at age 6 years (OR 1.33; 95% CI 1.04-1.69).
CONCLUSION:
LPCa14:0 is strongly related to rapid growth in infancy and childhood overweight/obesity. This suggests that LPCaC14:0 levels may represent a metabolically programmed effect of infant weight gain on the later obesity risk. However, these results require confirmation by independent cohorts
The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre-rRNA processing factors.
peer reviewe
Milk protein intake, the metabolic-endocrine response, and growth in infancy : data from a randomized clinical trial
BACKGROUND: Protein intake in early infancy has been suggested to be an important risk factor for later obesity, but information on potential mechanisms is very limited.
OBJECTIVE: This study examined the influence of protein intake in infancy on serum amino acids, insulin, and the insulin-like growth factor I (IGF-I) axis and its possible relation to growth in the first 2 y of life.
DESIGN: In a multicenter European study, 1138 healthy, formula-fed infants were randomly assigned to receive cow-milk-based infant and follow-on formulas with lower protein (LP; 1.77 and 2.2 g protein/100 kcal) or higher protein (HP; 2.9 and 4.4 g protein/100 kcal) contents for the first year. Biochemical variables were measured at age 6 mo in 339 infants receiving LP formula and 333 infants receiving HP formula and in 237 breastfed infants.
RESULTS: Essential amino acids, especially branched-chain amino acids, IGF-I, and urinary C-peptide:creatinine ratio, were significantly (P < 0.001) higher in the HP group than in the LP group, whereas IGF-binding protein (IGF-BP) 2 was lower and IGF-BP3 did not differ significantly. The median IGF-I total serum concentration was 48.4 ng/mL (25th, 75th percentile: 27.2, 81.8 ng/mL) in the HP group and 34.7 ng/mL (17.7, 57.5 ng/mL) in the LP group; the urine C-peptide:creatinine ratios were 140.6 ng/mg (80.0, 203.8 ng/mg) and 107.3 ng/mg (65.2, 194.7 ng/mg), respectively. Most essential amino acids, IGF-I, C-peptide, and urea increased significantly in both the LP and HP groups compared with the breastfed group. Total IGF-I was significantly associated with growth until 6 mo but not thereafter.
CONCLUSIONS: HP intake stimulates the IGF-I axis and insulin release in infancy. IGF-I enhances growth during the first 6 mo of life. This trial was registered at clinicaltrials.gov as NCT00338689
The introduction of solid food and growth in the first 2 y of life in formula-fed children: analysis of data from a European cohort study.
BACKGROUND: Early introduction of solid food has been suspected to induce excessive infant energy intake and weight gain.
OBJECTIVE: The objective of this study was to test whether introduction of solid foods influences energy intake or growth.
DESIGN: Healthy, formula-fed infants who were recruited in 5 European countries were eligible for study participation. Anthropometric measurements were taken at recruitment and at 3, 6, 12, and 24 mo. Time of introduction of solid foods and energy intake were determined by questionnaires and 3-d weighed food records at monthly intervals. Age at introduction of solid food was categorized into 4 groups: 6413 wk, 14-17 wk, 18-21 wk, and 6522 wk.
RESULTS: Of 1090 recruited infants, 830 (76%) had data available for age at first introduction of solid food, and 671 (61%) completed the study until 24 mo of age. The median age at introduction of solid food was 19 wk. The time of introduction of solid foods was associated with country, sex, birth weight, parental education and marital status, and maternal smoking. Energy intake was higher in the first 8 mo of life in children with solid-food intake. Solid-food introduction did not predict anthropometric measures at 24 mo. Growth trajectories differed significantly: children with solid-food introduction in the first 12 wk experienced early catch-up growth, whereas those introduced to solid food at >22 wk of age grew more slowly and stayed on lower trajectories.
CONCLUSIONS: Solid foods do not simply replace infant formula but increase energy intake. Time of introduction of solid food has little influence on infant growth. This trial was registered at clinicaltrials.gov as NCT00338689
Meta-analysis of epigenome-wide association studies in newborns and children show widespread sex differences in blood DNA methylation
Publisher Copyright: © 2022 The AuthorsBackground: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. Methods: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5–10 years from 8 cohorts (n = 4268). Results: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10−7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10−6) in older children and had methylation differences in the same direction. Conclusions: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.Peer reviewe
Genetics of early-life head circumference and genetic correlations with neurological, psychiatric and cognitive outcomes
Background: Head circumference is associated with intelligence and tracks from childhood into adulthood. Methods: We performed a genome-wide association study meta-analysis and follow-up of head circumference in a total of 29,192 participants between 6 and 30 months of age. Results: Seven loci reached genome-wide significance in the combined discovery and replication analysis of which three loci near ARFGEF2, MYCL1, and TOP1, were novel. We observed positive genetic correlations for early-life head circumference with adult intracranial volume, years of schooling, childhood and adult intelligence, but not with adult psychiatric, neurological, or personality-related phenotypes. Conclusions: The results of this study indicate that the biological processes underlying early-life head circumference overlap largely with those of adult head circumference. The associations of early-life head circumference with cognitive outcomes across the life course are partly explained by genetics
The LifeCycle Project-EU Child Cohort Network: a federated analysis infrastructure and harmonized data of more than 250,000 children and parents
DNA methylation and body mass index from birth to adolescence : meta-analyses of epigenome-wide association studies
Background DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. Methods We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. Results DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P <1.06 x 10(-7), with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth P-enrichment = 1; childhood P-enrichment = 2.00 x 10(-4); adolescence P-enrichment = 2.10 x 10(-7)). Conclusions There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.Peer reviewe
- …
