2,304 research outputs found

    Macro- and micro-strain in GaN nanowires on Si(111)

    Full text link
    We analyze the strain state of GaN nanowire ensembles by x-ray diffraction. The nanowires are grown by molecular beam epitaxy on a Si(111) substrate in a self-organized manner. On a macroscopic scale, the nanowires are found to be free of strain. However, coalescence of the nanowires results in micro-strain with a magnitude from +-0.015% to +-0.03%.This micro-strain contributes to the linewidth observed in low-temperature photoluminescence spectra

    Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Environmental Science & Technology, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es901612v.This study investigated operational factors influencing the removal of steroid estrogens and nonylphenolic compounds in two sewage treatment works, one a nitrifying/denitrifying activated sludge plant and the other a nitrifying/denitrifying activated sludge plant with phosphorus removal. Removal efficiencies of >90% for steroid estrogens and for longer chain nonylphenol ethoxylates (NP4−12EO) were observed at both works, which had equal sludge ages of 13 days. However, the biological activity in terms of milligrams of estrogen removed per day per tonne of biomass was found to be 50−60% more efficient in the nitrifying/denitrifying activated sludge works compared to the works which additionally incorporated phosphorus removal. A temperature reduction of 6 °C had no impact on the removal of free estrogens, but removal of the conjugated estrone-3-sulfate was reduced by 20%. The apparent biomass sorption (LogKp) values were greater in the nitrifying/denitrifying works than those in the nitrifying/denitrifying works with phosphorus removal for both steroid estrogens and nonylphenolic compounds possibly indicating a different cell surface structure and therefore microbial population. The difference in biological activity (mg tonne−1 d−1) identified in this study, of up to seven times, suggests that there is the potential for enhancing the removal of estrogens and nonylphenols if more detailed knowledge of the factors responsible for these differences can be identified and maximized, thus potentially improving the quality of receiving waters.Public Utilities Board (Singapore), Anglian Water Ltd, Severn Trent Water Ltd, Thames Water Utilities Ltd, United Utilities 393 Plc and Yorkshire Water Services

    Analysing multiparticle quantum states

    Full text link
    The analysis of multiparticle quantum states is a central problem in quantum information processing. This task poses several challenges for experimenters and theoreticians. We give an overview over current problems and possible solutions concerning systematic errors of quantum devices, the reconstruction of quantum states, and the analysis of correlations and complexity in multiparticle density matrices.Comment: 20 pages, 4 figures, prepared for proceedings of the "Quantum [Un]speakables II" conference (Vienna, 2014

    Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments

    Get PDF
    Methyl ethyl ketone (MEK) enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs) such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton-transfer-reaction mass spectrometer (PTR-MS) instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites, a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR Estonia site in a remote hemiboreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia). Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere

    Experimental non-classicality of an indivisible quantum system

    Full text link
    Quantum theory demands that, in contrast to classical physics, not all properties can be simultaneously well defined. The Heisenberg Uncertainty Principle is a manifestation of this fact. Another important corollary arises that there can be no joint probability distribution describing the outcomes of all possible measurements, allowing a quantum system to be classically understood. We provide the first experimental evidence that even for a single three-state system, a qutrit, no such classical model can exist that correctly describes the results of a simple set of pairwise compatible measurements. Not only is a single qutrit the simplest system in which such a contradiction is possible, but, even more importantly, the contradiction cannot result from entanglement, because such a system is indivisible, and it does not even allow the concept of entanglement between subsystems.Comment: 11 pages, 4 figures, 2 table

    Towards high-speed optical quantum memories

    Full text link
    Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers and quantum communications. So far, quantum memories have operated with bandwidths that limit data rates to MHz. Here we report the coherent storage and retrieval of sub-nanosecond low intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium vapor. The novel memory interaction takes place via a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field. This allows for an increase in data rates by a factor of almost 1000 compared to existing quantum memories. The memory works with a total efficiency of 15% and its coherence is demonstrated by directly interfering the stored and retrieved pulses. Coherence times in hot atomic vapors are on the order of microsecond - the expected storage time limit for this memory.Comment: 13 pages, 5 figure
    corecore