15 research outputs found

    Thyroid-stimulating hormone reference range and factors affecting it in a nationwide random sample

    Get PDF
    Objectives: Previous studies with mainly selected populations have proposed contradicting reference ranges for TSH and have disagreed on how screening, age and gender affect them. This study aimed to determine a TSH reference range on the Abbott Architect ci8200 integrated system in a large, nationwide, stratified random sample. To our knowledge this is the only study apart from the NHANES III that has addressed this issue in a similar nationwide setting. The effects of age, gender, TPOAb-positivity and medications on TSH reference range were also assessed. &nbsp; Methods: TSH was measured from 6247 participants randomly drawn from the population register to represent the Finnish adult population. TSH reference ranges were established of a thyroid-healthy population and its subpopulations with increasing and cumulative rigour of screening: screening for overt thyroid disease (thyroid-healthy population, n=5709); screening for TPOAb-positivity (risk factor-free subpopulation, n=4586); and screening for use of any medications (reference subpopulation, n=1849). &nbsp; Results: The TSH reference ranges of the thyroid-healthy population, and the risk factor-free and reference subpopulations were 0.4 &ndash; 4.4, 0.4 &ndash; 3.7 and 0.4 &ndash; 3.4 mU/L (2.5th &ndash; 97.5th percentiles), respectively. Although the differences in TSH between subgroups for age (P=0.002) and gender (P=0.005) reached statistical significance, the TSH distribution curves of the subgroups were practically superimposed. &nbsp; Conclusions: We propose 0.4 &ndash; 3.4 mU/L as a TSH reference range for adults for this platform, which is lower than those presently used in most laboratories. Our findings suggest that intensive screening for thyroid risk factors, especially for TPOAb-positivity, decreases the TSH upper reference limit.&nbsp;</p

    Modulation of glutaredoxin in the lung and sputum of cigarette smokers and chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: One typical feature in chronic obstructive pulmonary disease (COPD) is the disturbance of the oxidant/antioxidant balance. Glutaredoxins (Grx) are thiol disulfide oxido-reductases with antioxidant capacity and catalytic functions closely associated with glutathione, the major small molecular weight antioxidant of human lung. However, the role of Grxs in smoking related diseases is unclear. METHODS: Immunohistochemical and Western blot analyses were conducted with lung specimens (n = 45 and n = 32, respectively) and induced sputum (n = 50) of healthy non-smokers and smokers without COPD and at different stages of COPD. RESULTS: Grx1 was expressed mainly in alveolar macrophages. The percentage of Grx1 positive macrophages was significantly lower in GOLD stage IV COPD than in healthy smokers (p = 0.021) and the level of Grx1 in total lung homogenate decreased both in stage I–II (p = 0.045) and stage IV COPD (p = 0.022). The percentage of Grx1 positive macrophages correlated with the lung function parameters (FEV1, r = 0.45, p = 0.008; FEV1%, r = 0.46, p = 0.007, FEV/FVC%, r = 0.55, p = 0.001). Grx1 could also be detected in sputum supernatants, the levels being increased in the supernatants from acute exacerbations of COPD compared to non-smokers (p = 0.013) and smokers (p = 0.051). CONCLUSION: The present cross-sectional study showed that Grx1 was expressed mainly in alveolar macrophages, the levels being decreased in COPD patients. In addition, the results also demonstrated the presence of Grx1 in extracellular fluids including sputum supernatants. Overall, the present study suggests that Grx1 is a potential redox modulatory protein regulating the intracellular as well as extracellular homeostasis of glutathionylated proteins and GSH in human lung

    Widespread white matter microstructural differences in schizophrenia across 4322 individuals:Results from the ENIGMA Schizophrenia DTI Working Group

    Get PDF
    The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.Molecular Psychiatry advance online publication, 17 October 2017; doi:10.1038/mp.2017.170

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives

    No full text
    Item does not contain fulltextThe establishment of robust and replicable behavioural testing paradigms with translational value for psychiatric diseases is a major step forward in developing and testing etiology-directed treatment for these complex disorders. Based on the existing literature, we have generated an inventory of applied rodent behavioural testing paradigms relevant to autism spectrum disorders (ASD). This inventory focused on previously used paradigms that assess behavioural domains that are affected in ASD, such as social interaction, social communication, repetitive behaviours and behavioural inflexibility, cognition as well as anxiety behaviour. A wide range of behavioural testing paradigms for rodents were identified. However, the level of face and construct validity is highly variable. The predictive validity of these paradigms is unknown, as etiology-directed treatments for ASD are currently not on the market. To optimise these studies, future efforts should address aspects of reproducibility and take into account data about the neurodevelopmental underpinnings and trajectory of ASD. In addition, with the increasing knowledge of processes underlying ASD, such as sensory information processes and synaptic plasticity, phenotyping efforts should include multi-level automated analysis of, for example, representative task-related behavioural and electrophysiological read-outs

    Chronic kidney disease and premature ageing

    No full text
    hronic kidney disease (CKD) shares many phenotypic similarities with other chronic diseases, including heart failure, chronic obstructive pulmonary disease, HIV infection and rheumatoid arthritis. The most apparent similarity is premature ageing, involving accelerated vascular disease and muscle wasting. We propose that in addition to a sedentary lifestyle and psychosocial and socioeconomic determinants, four major disease-induced mechanisms underlie premature ageing in CKD: an increase in allostatic load, activation of the 'stress resistance response', activation of age-promoting mechanisms and impairment of anti-ageing pathways. The most effective current interventions to modulate premature ageing—treatment of the underlying disease, optimal nutrition, correction of the internal environment and exercise training—reduce systemic inflammation and oxidative stress and induce muscle anabolism. Deeper mechanistic insight into the phenomena of premature ageing as well as early diagnosis of CKD might improve the application and efficacy of these interventions and provide novel leads to combat muscle wasting and vascular impairment in chronic diseases

    Vascular heterogeneity and specialization in development and disease

    No full text
    Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease
    corecore