28 research outputs found

    From Cancer to Diarrhea: The Moving Target of Public Concern about Environmental Health Risks

    Get PDF
    Public concern about the environment can be unpredictable because it is influenced by numerous factors. Environmental health issues often emerge as important because the public is worried about their health especially when it comes to cancer. Public fear of cancer from environmental exposures is reinforced by many of the US regulations that set pollutant limits based on reducing the risk of cancers rather than other health outcomes. While fear of cancer will never dissipate, recent foodborne outbreaks are contributing to raising public awareness of the health effects from microbes. This paper adds to the dialogue about the challenges of enhancing public understanding of environmental health issues. Internal factors, such as worry, that contribute to public outrage are sometimes more important than external factors such as the media. In addition, relying on the media to inform the public about imminent public health risks may be an ineffective approach to enhancing understanding. In the end, scientists and risk communicators are forced to compete with politicians who are often very effective at manipulating public understanding of risk

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies

    Get PDF
    We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of structure growth and the normalization of the galaxy power-spectrum by up to a factor of two. If we translate our measurements into a constraint on sigma_8(z=0) assuming a concordance cosmological model and General Relativity (GR), we find that using a bias model improves our uncertainty by a factor of nearly 1.5. Our results are consistent with a flat Lambda Cold Dark Matter model and with GR.Comment: Accepted for publication in MNRAS (clarifications added, results and conclusions unchanged

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Analysis of potential systematics

    Get PDF
    We analyze the density field of galaxies observed by the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS) included in the SDSS Data Release Nine (DR9). DR9 includes spectroscopic redshifts for over 400,000 galaxies spread over a footprint of 3,275 deg^2. We identify, characterize, and mitigate the impact of sources of systematic uncertainty on large-scale clustering measurements, both for angular moments of the redshift-space correlation function and the spherically averaged power spectrum, P(k), in order to ensure that robust cosmological constraints will be obtained from these data. A correlation between the projected density of stars and the higher redshift (0.43 < z < 0.7) galaxy sample (the `CMASS' sample) due to imaging systematics imparts a systematic error that is larger than the statistical error of the clustering measurements at scales s > 120h^-1Mpc or k < 0.01hMpc^-1. We find that these errors can be ameliorated by weighting galaxies based on their surface brightness and the local stellar density. We use mock galaxy catalogs that simulate the CMASS selection function to determine that randomly selecting galaxy redshifts in order to simulate the radial selection function of a random sample imparts the least systematic error on correlation function measurements and that this systematic error is negligible for the spherically averaged correlation function. The methods we recommend for the calculation of clustering measurements using the CMASS sample are adopted in companion papers that locate the position of the baryon acoustic oscillation feature (Anderson et al. 2012), constrain cosmological models using the full shape of the correlation function (Sanchez et al. 2012), and measure the rate of structure growth (Reid et al. 2012). (abridged)Comment: Matches version accepted by MNRAS. Clarifications and references have been added. See companion papers that share the "The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:" titl

    The clustering of galaxies at z~0.5 in the SDSS-III Data Release 9 BOSS-CMASS sample: a test for the LCDM cosmology

    Full text link
    We present results on the clustering of 282,068 galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) sample of massive galaxies with redshifts 0.4<z<0.7 which is part of the Sloan Digital Sky Survey III project. Our results cover a large range of scales from ~0.5 to ~90 Mpc/h. We compare these estimates with the expectations of the flat LCDM cosmological model with parameters compatible with WMAP7 data. We use the MultiDark cosmological simulation together with a simple halo abundance matching technique, to estimate galaxy correlation functions, power spectra, abundance of subhaloes and galaxy biases. We find that the LCDM model gives a reasonable description to the observed correlation functions at z~0.5, which is a remarkably good agreement considering that the model, once matched to the observed abundance of BOSS galaxies, does not have any free parameters. However, we find a deviation (>~10%) in the correlation functions for scales less than ~1 Mpc/h and ~10-40 Mpc/h. A more realistic abundance matching model and better statistics from upcoming observations are needed to clarify the situation. We also estimate that about 12% of the "galaxies" in the abundance-matched sample are satellites inhabiting central haloes with mass M>~1e14 M_sun/h. Using the MultiDark simulation we also study the real space halo bias b(r) of the matched catalogue finding that b=2.00+/-0.07 at large scales, consistent with the one obtained using the measured BOSS projected correlation function. Furthermore, the linear large-scale bias depends on the number density n of the abundance-matched sample as b=-0.048-(0.594+/-0.02)*log(n/(h/Mpc)^3). Extrapolating these results to BAO scales we measure a scale-dependent damping of the acoustic signal produced by non-linear evolution that leads to ~2-4% dips at ~3 sigma level for wavenumbers k>~0.1 h/Mpc in the linear large-scale bias.Comment: Replaced to match published version. Typos corrected; 25 pages, 17 figures, 9 tables. To appear in MNRAS. Correlation functions (projected and redshift-space) and correlation matrices of CMASS presented in Appendix B. Correlation and covariance data for the combined CMASS sample can be downloaded from http://www.sdss3.org/science/boss_publications.ph

    Combining Path Integration and Remembered Landmarks When Navigating without Vision

    Get PDF
    This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information.National Institutes of Health (U.S.) (Grant T32 HD007151)National Institutes of Health (U.S.) (Grant T32 EY07133)National Institutes of Health (U.S.) (Grant F32EY019622)National Institutes of Health (U.S.) (Grant EY02857)National Institutes of Health (U.S.) (Grant EY017835-01)National Institutes of Health (U.S.) (Grant EY015616-03)United States. Department of Education (H133A011903

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering

    Get PDF
    We analyze the anisotropic clustering of massive galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) sample, which consists of 264,283 galaxies in the redshift range 0.43 < z < 0.7 spanning 3,275 square degrees. Both peculiar velocities and errors in the assumed redshift-distance relation ("Alcock-Paczynski effect") generate correlations between clustering amplitude and orientation with respect to the line-of-sight. Together with the sharp baryon acoustic oscillation (BAO) standard ruler, our measurements of the broadband shape of the monopole and quadrupole correlation functions simultaneously constrain the comoving angular diameter distance (2190 +/- 61 Mpc) to z=0.57, the Hubble expansion rate at z=0.57 (92.4 +/- 4.5 km/s/Mpc), and the growth rate of structure at that same redshift (d sigma8/d ln a = 0.43 +/- 0.069). Our analysis provides the best current direct determination of both DA and H in galaxy clustering data using this technique. If we further assume a LCDM expansion history, our growth constraint tightens to d sigma8/d ln a = 0.415 +/- 0.034. In combination with the cosmic microwave background, our measurements of DA, H, and growth all separately require dark energy at z > 0.57, and when combined imply \Omega_{\Lambda} = 0.74 +/- 0.016, independent of the Universe's evolution at z<0.57. In our companion paper (Samushia et al. prep), we explore further cosmological implications of these observations.Comment: 19 pages, 11 figures, submitted to MNRAS, comments welcom

    Knowing Each Random Error of Our Ways, but Hardly Correcting for It: an Instance of Optimal Performance

    Get PDF
    van Dam L, Ernst MO. Knowing Each Random Error of Our Ways, but Hardly Correcting for It: an Instance of Optimal Performance. PLOS ONE. 2013;8(10): e78757.Random errors are omnipresent in sensorimotor tasks due to perceptual and motor noise. The question is, are humans aware of their random errors on an instance-by-instance basis? The appealing answer would be ‘no’ because it seems intuitive that humans would otherwise immediately correct for the errors online, thereby increasing sensorimotor precision. However, here we show the opposite. Participants pointed to visual targets with varying degree of feedback. After movement completion participants indicated whether they believed they landed left or right of target. Surprisingly, participants' left/right-discriminability was well above chance, even without visual feedback. Only when forced to correct for the error after movement completion did participants loose knowledge about the remaining error, indicating that random errors can only be accessed offline. When correcting, participants applied the optimal correction gain, a weighting factor between perceptual and motor noise, minimizing end-point variance. Together these results show that humans optimally combine direct information about sensorimotor noise in the system (the current random error), with indirect knowledge about the variance of the perceptual and motor noise distributions. Yet, they only appear to do so offline after movement completion, not while the movement is still in progress, suggesting that during movement proprioceptive information is less precise

    Multisensory perception: from integration to remapping

    No full text
    Ernst MO, Di Luca M. Multisensory perception: from integration to remapping. In: Trommershäuser KPKJ, Landy MS, eds. Sensory Cue Integration. New York, NY, USA: Oxford University Press; 2011
    corecore