6,030 research outputs found
Fully Differential Investigation of Two-Center Interference in Dissociative Capture in p + Hâ Collisions
We have measured and calculated fully differential cross sections for vibrational dissociation following capture in 75-keV p + H2 collisions. For a molecular orientation perpendicular to the projectile beam axis and parallel to the transverse momentum transfer we observe a pronounced interference structure. The positions of the interference extrema suggest that the interference term is afflicted with a phase shift which depends on the projectile scattering angle. However, no significant dependence on the kinetic-energy release was observed. Considerable discrepancies between our calculations and experimental data were found
Fully Differential Study of Interference Effects in the Ionization of Hâ by Proton Impact
We have measured fully differential cross sections for ionization of H2 by 75-keV proton impact. The coherence length of the projectile beam was varied by changing the distance between a collimating slit and the target. By comparing the cross sections measured for large and small coherence lengths pronounced interference effects could be identified in the data. A surprising result is that the phase angle in the interference term is primarily determined by the momentum transfer and only to a lesser extent by the recoil-ion momentum
Complete Momentum Balance in Ionization of Hâ by 75-keV-Proton Impact for Varying Projectile Coherence
We report on a kinematically complete experiment on ionization of H2 by proton impact. While a significant impact of the projectile coherence properties on the scattering-angle dependence of double-differential cross sections (DDCSs), reported earlier, is confirmed by the present data, only weak coherence effects are found in the electron and recoil-ion momentum dependence of the DDCSs. This suggests that the phase angle in the interference term is determined primarily by the projectile momentum transfer rather than by the recoil-ion momentum. We therefore cannot rule out the possibility that the interference observed in our data is not primarily due to a two-center effect
Target Dependence of Postcollision Interaction Effects on Fully Differential Ionization Cross Sections
We have measured and calculated fully differential cross sections (FDCS) for ionization of helium by 75-keV proton impact. Ejected electrons with a speed close to and above the projectile speed were investigated. This range of kinematics represents a largely unexplored regime. A high sensitivity of the FDCS to the details of the description of the few-body dynamics, reported earlier for ionization of H2, was confirmed. A peak structure was found in an electron angular range between the regions where the so-called binary and recoil peaks are usually observed. The need for nonperturbative calculations using a two-center basis set is demonstrated
Impact of Freezing Delay Time on Tissue Samples for Metabolomic Studies
Introduction: Metabolic profiling of intact tumor tissue by high resolution magic angle spinning (HR MAS) MR spectroscopy (MRS) provides important biological information possibly useful for clinical diagnosis and development of novel treatment strategies. However, generation of high-quality data requires that sample handling from surgical resection until analysis is performed using systematically validated procedures. In this study, we investigated the effect of postsurgical freezing delay time on global metabolic profiles and stability of individual metabolites in intact tumor tissue.Materials and methods: Tumor tissue samples collected from two patient-derived breast cancer xenograft models (n = 3 for each model) were divided into pieces that were snap-frozen in liquid nitrogen at 0, 15, 30, 60, 90, and 120 min after surgical removal. In addition, one sample was analyzed immediately, representing the metabolic profile of fresh tissue exposed neither to liquid nitrogen nor to room temperature. We also evaluated the metabolic effect of prolonged spinning during the HR MAS experiments in biopsies from breast cancer patients (n = 14). All samples were analyzed by proton HR MAS MRS on a Bruker Avance DRX600 spectrometer, and changes in metabolic profiles were evaluated using multivariate analysis and linear mixed modeling.Results: Multivariate analysis showed that the metabolic differences between the two breast cancer models were more prominent than variation caused by freezing delay time. No significant changes in levels of individual metabolites were observed in samples frozen within 30 min of resection. After this time point, levels of choline increased, whereas ascorbate, creatine, and glutathione (GS) levels decreased. Freezing had a significant effect on several metabolites but is an essential procedure for research and biobank purposes. Furthermore, four metabolites (glucose, glycine, glycerophosphocholine, and choline) were affected by prolonged HR MAS experiment time possibly caused by physical release of metabolites caused by spinning or due to structural degradation processes.Conclusion: The MR metabolic profiles of tumor samples are reproducible and robust to variation in postsurgical freezing delay up to 30 min
Sustainable nitrogen fixation from synergistic effect of photo-electrochemical water splitting and atmospheric pressure N2 plasma
In this study, nitrogen fixation in the electrolyte was achieved by atmospheric pressure non-thermal plasma generated by a sinusoidal power supply (with an applied voltage of 10 kV and frequency of 33 kHz). Ammonia measurements on plasma exposed electrolyte at several working gas and purging gas conditions revealed that nitrogen plasma in the same gas environment is more favourable for plasma-assisted ammonia synthesis. In addition, photo-electrochemical water splitting was performed by irradiating UV light on a titanium dioxide semiconductor photo-anode to generate hydrogen donor in nitrogen reduction reaction. The amount of ammonia synthesized by this synergistic process of photo-electrochemical water splitting and nitrogen plasma is six times higher than that obtained by nitrogen plasma alone. An increase in the co-synthesized NOX concentrations and background contamination at reaction site reduces the ammonia synthesis rate and Faraday efficiency. However, the ammonia production efficiency was increased up to 72% by using a proton-exchange membrane which prevents the diffusion of oxygen evolved from water splitting into the plasma, and by reducing the axial distance between the plasma electrode and reaction site. The sustainable nitrogen fixation process reported herein can be performed at atmospheric pressure conditions without a direct input of hydrogen gas or any catalyst
Recommended from our members
A Search for Dark Higgs Bosons
Recent astrophysical and terrestrial experiments have motivated the proposal
of a dark sector with GeV-scale gauge boson force carriers and new Higgs
bosons. We present a search for a dark Higgs boson using 516 fb-1 of data
collected with the BABAR detector. We do not observe a significant signal and
we set 90% confidence level upper limits on the product of the Standard
Model-dark sector mixing angle and the dark sector coupling constant.Comment: 7 pages, 5 postscript figures, published version with improved plots
for b/w printin
Association of Intrauterine Exposure to Maternal Diabetes and Obesity With Type 2 Diabetes in Youth: The SEARCH Case-Control Study
OBJECTIVEâLimited data exist on the association between in utero exposure to maternal diabetes and obesity and type 2 diabetes in diverse youth. These associations were explored in African-American, Hispanic, and non-Hispanic white youth participating in the SEARCH Case-Control Study
Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays
We report the first reconstruction in hadron collisions of the suppressed
decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the
CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by
the CDF II detector at the Tevatron collider. We reconstruct a signal for the
B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard
deviations, and measure the ratios of the suppressed to favored branching
fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) =
[42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm
2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) =
-0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for
B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for
Publicatio
- âŠ