35 research outputs found

    DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions

    Get PDF
    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling

    Bi-allelic mutations in MYL1 cause a severe congenital myopathy.

    Get PDF
    OBJECTIVE: Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, approximately 50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. METHODS: We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. RESULTS: We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain in both probands. A homozygous essential splice acceptor variant (c.479-2A>G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modeling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin essential light chain is critical for myofibre development and function. INTERPRETATION: Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with a severe congenital myopathy

    Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites

    Get PDF
    The centrosome is the master orchestrator of mitotic spindle formation and chromosome segregation in animal cells. Centrosome abnormalities are frequently observed in cancer, but little is known of their origin and about pathways affecting centrosome homeostasis. Here we show that autophagy preserves centrosome organization and stability through selective turnover of centriolar satellite components, a process we termed doryphagy. Autophagy targets the satellite organizer PCM1 by interacting with GABARAPs via a C-terminal LIR motif. Accordingly, autophagy deficiency results in accumulation of large abnormal centriolar satellites and a resultant dysregulation of centrosome composition. These alterations have critical impact on centrosome stability and lead to mitotic centrosome fragmentation and unbalanced chromosome segregation. Our findings identify doryphagy as an important centrosome-regulating pathway and bring mechanistic insights to the link between autophagy dysfunction and chromosomal instability. In addition, we highlight the vital role of centriolar satellites in maintaining centrosome integrity

    Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcoplasmic inclusions

    Get PDF
    Myoglobin, encoded by MB, is a small cytoplasmic globular hemoprotein highly expressed in cardiac myocytes and oxidative skeletal myofibers. Myoglobin binds O-2, facilitates its intracellular transport and serves as a controller of nitric oxide and reactive oxygen species. Here, we identify a recurrent c.292C>T ( p.His98Tyr) substitution in MB in fourteen members of six European families suffering from an autosomal dominant progressive myopathy with highly characteristic sarcoplasmic inclusions in skeletal and cardiac muscle. Myoglobinopathy manifests in adulthood with proximal and axial weakness that progresses to involve distal muscles and causes respiratory and cardiac failure. Biochemical characterization reveals that the mutant myoglobin has altered O-2 binding, exhibits a faster heme dissociation rate and has a lower reduction potential compared to wild-type myoglobin. Preliminary studies show that mutant myoglobin may result in elevated superoxide levels at the cellular level. These data define a recognizable muscle disease associated with MB mutation.Peer reviewe

    DisProt: intrinsic protein disorder annotation in 2020

    Get PDF
    The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the ‘dark’ proteome

    E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft

    Get PDF
    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation

    HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα

    Get PDF
    The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator- 1) has been defined as a novel regulator of mitophagy in both PINK1/PARKINdependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKa kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKa are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells

    S-nitrosylation affects TRAP1 structure and ATPase activity and modulates cell response to apoptotic stimuli

    Get PDF
    The mitochondrial chaperone TRAP1 has been involved in several mitochondrial functions, and modulation of its expression/activity has been suggested to play a role in the metabolic reprogramming distinctive of cancer cells. TRAP1 posttranslational modifications, i.e. phosphorylation, can modify its capability to bind to different client proteins and modulate its oncogenic activity. Recently, it has been also demonstrated that TRAP1 is S-nitrosylated at Cys501, a redox modification associated with its degradation via the proteasome. Here we report molecular dynamics simulations of TRAP1, together with analysis of long-range structural communication, providing a model according to which Cys501 S-nitrosylation induces conformational changes to distal sites in the structure of the protein. The modification is also predicted to alter open and closing motions for the chaperone function. By means of colorimetric assays and site directed mutagenesis aimed at generating C501S variant, we also experimentally confirmed that selective S-nitrosylation of Cys501 decreases ATPase activity of recombinant TRAP1. Coherently, C501S mutant was more active and conferred protection to cell death induced by staurosporine. Overall, our results provide the first in silico, in vitro and cellular evidence of the relevance of Cys501 S-nitrosylation in TRAP1 biology

    Characterization of a natural variant of human NDP52 and its functional consequences on mitophagy

    No full text
    The role of mitophagy, a process that allows the removal of damaged mitochondria from cells, remains unknown in multiple sclerosis (MS), a disease that is found associated with dysfunctional mitochondria. Here we have qualitatively and quantitatively studied the main players in PINK1-mediated mitophagy in peripheral blood mononuclear cells (PBMCs) of patients with relapsing–remitting MS. We found the variant c.491G>A (rs550510, p.G140E) of NDP52, one of the major mitophagy receptor genes, associated with a MS cohort. Through the characterization of this variant, we discovered that the residue 140 of human NDP52 is a crucial modulator of NDP52/LC3C binding, promoting the formation of autophagosomes in order to drive efficient mitophagy. In addition, we found that in the PBMC population, NDP52 is mainly expressed in B cells and by ensuring efficient mitophagy, it is able to limit the production of the proinflammatory cytokine TNF-α following cell stimulation. In sum, our results contribute to a better understanding of the role of NDP52 in mitophagy and underline, for the first time, a possible role of NDP52 in MS
    corecore