172 research outputs found

    Iodine chemistry in the troposphere and its effect on ozone

    Get PDF
    Despite the potential influence of iodine chemistry on the oxidizing capacity of the troposphere, reactive iodine distributions and their impact on tropospheric ozone remain almost unexplored aspects of the global atmosphere. Here we present a comprehensive global modelling experiment aimed at estimating lower and upper limits of the inorganic iodine burden and its impact on tropospheric ozone. Two sets of simulations without and with the photolysis of IxOy oxides (i.e. I2O2, I2O3 and I2O4) were conducted to define the range of inorganic iodine loading, partitioning and impact in the troposphere. Our results show that the most abundant daytime iodine species throughout the middle to upper troposphere is atomic iodine, with an annual average tropical abundance of (0.15-0.55) pptv. We propose the existence of a "tropical ring of atomic iodine" that peaks in the tropical upper troposphere (∼11-14 km) at the equator and extends to the sub-tropics (30°N-30°S). Annual average daytime I = IO ratios larger than 3 are modelled within the tropics, reaching ratios up to ∼20 during vigorous uplift events within strong convective regions. We calculate that the integrated contribution of catalytic iodine reactions to the total rate of tropospheric ozone loss (IOx Loss) is 2-5 times larger than the combined bromine and chlorine cycles. When IxOy photolysis is included, IOx Loss represents an upper limit of approximately 27, 14 and 27% of the tropical annual ozone loss for the marine boundary layer (MBL), free troposphere (FT) and upper troposphere (UT), respectively, while the lower limit throughout the tropical troposphere is ∼9 %. Our results indicate that iodine is the second strongest ozone-depleting family throughout the global marine UT and in the tropical MBL. We suggest that (i) iodine sources and its chemistry need to be included in global tropospheric chemistry models, (ii) experimental programs designed to quantify the iodine budget in the troposphere should include a strategy for the measurement of atomic I, and (iii) laboratory programs are needed to characterize the photochemistry of higher iodine oxides to determine their atmospheric fate since they can potentially dominate halogen-catalysed ozone destruction in the troposphere

    A framework for interpolating scattered data using space-filling curves

    Get PDF
    The analysis of spatial data occurs in many disciplines and covers a wide variety activities. Available techniques for such analysis include spatial interpolation which is useful for tasks such as visualization and imputation. This paper proposes a novel approach to interpolation using space-filling curves. Two simple interpolation methods are described and their ability to interpolate is compared to several interpolation techniques including natural neighbour interpolation. The proposed approach requires a Monte-Carlo step that requires a large number of iterations. However experiments demonstrate that the number of iterations will not change appreciably with larger datasets

    The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    Get PDF
    Model experiment description paperProjections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017-2018 time frame, and output from the climate model projections made available and analyses performed over the 2018-2020 period.CRESCENDO project members (V. Eyring, P. Friedlingstein, E. Kriegler, R. Knutti, J. Lowe, K. Riahi, D. van Vuuren) acknowledge funding received from the Horizon 2020 European Union’s Framework Programme for Research and Innovation under grant agreement no. 641816. C. Tebaldi, G. A. Meehl and B. M. Sanderson acknowledge the support of the Regional and Global Climate Modeling Program (RGCM) of the U.S. Department of Energy’s, Office of Science (BER), Cooperative Agreement DE-FC02-97ER6240

    Cloud impacts on photochemistry: Building a climatology of photolysis rates from the Atmospheric Tomography mission

    Get PDF
    Abstract. Measurements from actinic flux spectroradiometers on board the NASA DC-8 during the Atmospheric Tomography (ATom) mission provide an extensive set of statistics on how clouds alter photolysis rates (J values) throughout the remote Pacific and Atlantic Ocean basins. J values control tropospheric ozone and methane abundances, and thus clouds have been included for more than three decades in tropospheric chemistry modeling. ATom made four profiling circumnavigations of the troposphere capturing each of the seasons during 2016–2018. This work examines J values from the Pacific Ocean flights of the first deployment, but publishes the complete Atom-1 data set (29 July to 23 August 2016). We compare the observed J values (every 3 s along flight track) with those calculated by nine global chemistry–climate/transport models (globally gridded, hourly, for a mid-August day). To compare these disparate data sets, we build a commensurate statistical picture of the impact of clouds on J values using the ratio of J-cloudy (standard, sometimes cloudy conditions) to J-clear (artificially cleared of clouds). The range of modeled cloud effects is inconsistently large but they fall into two distinct classes: (1) models with large cloud effects showing mostly enhanced J values aloft and or diminished at the surface and (2) models with small effects having nearly clear-sky J values much of the time. The ATom-1 measurements generally favor large cloud effects but are not precise or robust enough to point out the best cloud-modeling approach. The models here have resolutions of 50–200 km and thus reduce the occurrence of clear sky when averaging over grid cells. In situ measurements also average scattered sunlight over a mixed cloud field, but only out to scales of tens of kilometers. A primary uncertainty remains in the role of clouds in chemistry, in particular, how models average over cloud fields, and how such averages can simulate measurements. NERC ACSIS LTSM projec

    A Parse-based Framework for Coupled Rhythm Quantization and Score Structuring

    Get PDF
    International audienceWe present a formal language-based framework for MIDI-to-score transcription, the problem of converting a sequence of symbolic musical events with arbitrary timestamps into a structured music score. The framework aims at solving in one pass the two subproblems of rhythm quantization and score production. It relies, throughout the process, on an apriori hierarchical model of scores given by generative grammars. We show that this coupled approach helps to make relevant and interrelated decisions, and we present an algorithm computing transcription solutions optimal with respect to both the fitness of the quantization to the input, and a measure of complexity of music notation

    The Role of Natural Halogens in Global Tropospheric Ozone Chemistry and Budget Under Different 21st Century Climate Scenarios

    Get PDF
    Funder: NSFFunder: Office of Science of the US Department of EnergyFunder: PICT‐2016‐0714 (ANPCyT)Funder: i‐COOP‐B20331 (CSIC + CONICET)Abstract: Tropospheric ozone ( O 3 ) is an important greenhouse gas and a surface pollutant. The future evolution of O 3 abundances and chemical processing are uncertain due to a changing climate, socioeconomic developments, and missing chemistry in global models. Here, we use an Earth System Model with natural halogen chemistry to investigate the changes in the O 3 budget over the 21st century following Representative Concentration Pathway (RCP)6.0 and RCP8.5 climate scenarios. Our results indicate that the global tropospheric O 3 net chemical change (NCC, chemical gross production minus destruction) will decrease ∼ 50 % , notwithstanding increasing or decreasing trends in ozone production and loss. However, a wide range of surface NCC variations (from −60 % to 150 % ) are projected over polluted regions with stringent abatements in O 3 precursor emissions. Water vapor and iodine are found to be key drivers of future tropospheric O 3 destruction, while the largest changes in O 3 production are determined by the future evolution of peroxy radicals. We show that natural halogens, currently not considered in climate models, significantly impact on the present‐day and future global O 3 burden reducing ∼ 30–35 Tg (11–15 % ) of tropospheric ozone throughout the 21st century regardless of the RCP scenario considered. This highlights the importance of including natural halogen chemistry in climate model projections of future tropospheric ozone

    Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM)

    Get PDF
    We present new insights into the evolution and interactions of stratospheric aerosol using an updated version of the Whole Atmosphere Community Climate Model (WACCM). Improved horizontal resolution, dynamics, and chemistry now produce an internally generated quasi-biennial oscillation and significant improvements to stratospheric temperatures and ozone compared to observations. We present a validation of WACCM column ozone and climate calculations against observations. The prognostic treatment of stratospheric sulfate aerosols accurately represents the evolution of stratospheric aerosol optical depth and perturbations to solar and longwave radiation following the June 1991 eruption of Mount Pinatubo. We confirm the inclusion of interactive OH chemistry as an important factor in the formation and initial distribution of aerosol following large inputs of sulfur dioxide (SO2) to the stratosphere. We calculate that depletion of OH levels within the dense SO2 cloud in the first weeks following the Pinatubo eruption significantly prolonged the average initial e-folding decay time for SO2 oxidation to 47 days. Previous observational and model studies showing a 30 day decay time have not accounted for the large (30–55%) losses of SO2 on ash and ice within 7–9 days posteruption and have not correctly accounted for OH depletion. We examine the variability of aerosol evolution in free-running climate simulations due to meteorology, with comparison to simulations nudged with specified dynamics. We assess calculated impacts of volcanic aerosols on ozone loss with comparisons to observations. The completeness of the chemistry, dynamics, and aerosol microphysics in WACCM qualify it for studies of stratospheric sulfate aerosol geoengineering
    corecore