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Abstract. The analysis of spatial data occurs in many disciplines and
covers a wide variety activities. Available techniques for such analysis
include spatial interpolation which is useful for tasks such as visualiza-
tion and imputation. This paper proposes a novel approach to interpo-
lation using space-filling curves. Two simple interpolation methods are
described and their ability to interpolate is compared to several interpola-
tion techniques including natural neighbour interpolation. The proposed
approach requires a Monte-Carlo step that requires a large number of
iterations. However experiments demonstrate that the number of itera-
tions will not change appreciably with larger datasets.

1 Introduction

Spatial interpolation is one of the many tools available for spatial data mining
[10]. It is particularly useful in spatial analysis since it is often the case that
data cannot be collected at every desired location due to practical issues such
as cost. In addition the data may have missing values [11], that may require
imputation. The literature for spatial interpolation is large and the interested
reader is referred to [8] for an overview of available approaches in the practical
context of environmental sciences.

Space-filling curves have been successfully used in a broad range of compu-
tational problems, for example in calculating efficiently all nearest neighbours
[4] and image segmentation [9], see [1] for a comprehensive review. The primary
reason for this is the fact that space-filling curves can be used to map multi-
dimensional Euclidean data onto one dimension which partially preserves local
spatial correlations, i.e. points that are close in the multidimensional space are
likely to be close in the one dimensional ordering of the data.

[16] investigated the orderings of data along space-filling curves where the
data has been repeatedly transformed using shape preserving transformations
only. It was shown that the probability of an ordering is dependent on the spatial
locations of the data in the higher dimensional space. This property was then
used to construct novel shape descriptors for shape matching. The concern of
this paper is to use the approach detailed in [16] for spatial interpolation. The
essential idea is to transform the data-sites and query points using a shape
preserving transformation and then map them onto a space-filling curve, where



a simple interpolation scheme is used to impute the value at each query point.
This process is repeated using different shape preserving transformations and
the resulting interpolations are then aggregated. The main motivation for this
work is to produce a conceptually simple approach for interpolation in two or
higher dimension that is also numerically robust and simple to implement.

In the next section, relevant methods for interpolating scattered data are dis-
cussed. After which space-filling curves are introduced with a brief overview of
the construction of the Hilbert curve. Following this, the framework for perform-
ing spatial interpolation using space-filling curves is introduced. Experiments to
demonstrate the utility of the approach are provided. The final section concludes
with ideas for future research.

2 Scattered data interpolation methods

In the following discussion it will be assumed that there are n data-sites x1, . . . , xn

with respective locations x1 . . .xn and each data-site has a value denoted z1 . . . zn.
In addition there arem query sites, q1 . . . qm with location q1 . . .qm. It is at these

locations that an imputed value is desired, i.e. we wish to estimate f̂(qj), for
query site qj .

There are a large array of methods available for spatial interpolation. The
focus in this section will be on three methods for spatial interpolation. They have
been chosen specifically because they are the higher dimensional analogues of the
interpolation we do in one dimension and hence provide a clear comparison. They
are piecewise constant, piecewise linear and natural neighbour interpolation.

Piecewise constant interpolation is a very simple approach to scattered data
interpolation. The interpolated value, f̂(qj), for query site qj is the value asso-
ciated with the closest (in the Euclidean sense) data-site.

Piecewise linear interpolation for scattered data uses the Delauney triangula-
tion, see e.g. [12], induced from the data-sites. The vertices in this triangulation
are the data-sites. In, for example 2D, a query point will reside in one triangle.
Let us assume that the vertices are the data-sites with indicies p1j , p2j , p3j , then

f̂(qj) =

∑3
i=1 apizpij∑3

i=1 api

,

where api is the Euclidean distance between the query point qj and the vertex
location xpij

Natural neighbour interpolation is a well known approach to interpolating
scattered data, see for example [3]. This interpolation scheme involves calculat-
ing a weighted sum of data-site values that are natural neighbours (definition to
follow) to the query point. There exist several approaches to calculating these
weights, the most well known is Sibson interpolation and is calculated as fol-
lows. First the Voronoi tessellation is induced from the data-site locations. This
consists of partitioning the region of interest into non-overlapping tiles. Each
tile contains only one data-site and contains all locations that are closest to this
data-site, Fig. 1(a).



The location of the query point is added to the list of data-sites and a new
Voronoi diagram is produced. This is shown in Fig. 1(b) where the query point
in this figure is denoted with a cross. This query point has its own Voronoi tile
that contains regions taken from the original Voronoi tiles shown in Fig. 1(a).
Data-sites that have had their Voronoi tile changed by the inclusion of the query
point are called its natural neighbours. For a particular query point qj

f̂(qj) =

∑
i wijzi∑
i wij

,

where wij is the area from the query point tile that was originally part of the
Voronoi tile for the ith data-site.

Conceptually natural neighbour interpolation is relatively straightforward
however computing it efficiently is rather involved [7]. Indeed approximations
that rely on discretising the region of interest have been proposed to produce
more efficient algorithm [13]. Natural neighbour interpolation is defined for two
or more dimensions, since in 1D, the procedure for natural neighbour interpola-
tion reduces to piecewise linear interpolation. Briefly, in 1D the Voronoi tiles are
simply intervals and the natural neighbours of a query point are its predecessor
and successor data-sites. Since we shall be using linear interpolation in 1D in our
proposed approach, we consider natural neighbour interpolation to be a relevant
method to compare against.

(a) Data-sites only (b) Data-sites and query
point

Fig. 1: Voronoi diagrams used for natural neighbour interpolation weight calcu-
lation. The query point qj is denoted by a cross located in the centre of (b).

3 Space-filling curves

A space-filling curve is typically defined as a continuous mapping from the unit
interval [0, 1], onto d-dimensional Euclidean space where the image consists of
all points within the compact region [0, 1]d.



(a) (b) (c)

Fig. 2: First three iterations for Hilbert curve construction, the circles denote the
centres of the sub-squares.

Fig. 2 shows the construction of the Hilbert space-filling curve. A square is
sub-divided into four sub-squares which are given a specific order and orientation.
Joining the centres of these sub-squares by following their order produces a
polygon approximation to the Hilbert curve, Fig. 2(a). These sub-squares are
themselves recursively subdivided. Figs 2(b,c) show the polygon curve for second
and third iteration respectively. In the limit as the number of iterations tends
to infinity, the polygon curve tends to the Hilbert curve.

A detailed explanation regarding space-filling curves and their construction
can be found in [1], [14]. The code used in the paper is based on [15].

4 Framework for Interpolation

There are three stages in the proposed framework for interpolation, denoted
shape preserving embedding, one-dimensional interpolation and aggregation. Each
stage is described separately in the following sections.

4.1 Shape Preserving Embedding

The first stage involves ordering the data-sites (and query locations) in multidi-
mensional space along a space-filling curve. The entire process is demonstrated
graphically for the 2D case in Fig. 3. For simplicity it is assumed that interpo-
lation is required over a square region of interest containing all the data-sites,
Fig. 3(a). A shape preserving transformation is applied that maps the region of
interest onto the unit square denoted by the grey region in Fig. 3(b). Each data-
site (and query point) can then be ordered along a Hilbert curve. Fig. 3(c) shows
each data-site joined to their predecessor and successor along the space-filling
curve.

Let e denote a shape preserving transformation that embeds the query points
and data-sites successfully into the unit square. The transformation is in fact a



(a) Data-sites (b) Embed (c) Data-sites ordered

Fig. 3: Embedding data-sites onto Hilbert Curve.

composite, comprising a translation, a rotation, a reflection (with probability 0.5)
and a scaling. Details of the embedding can found in [16], the maximum scale
factor in this study is 10. For reasons of computational simplicity the region of
interest, i.e. domain over which the interpolation function f̂(·) is to be estimated
is assumed to be a discretised square with resolution 2000× 2000.

Let h denote a function that maps a point in the unit square onto the unit
interval using a Hilbert curve. The Hilbert index, ti, for the ith data-site is

ti = h(e(xi))

and similarly for query sites. The data is then sorted in ascending Hilbert index
order. Let this ordering function be denoted by π, then tπ(di) and tπ(qj) are both
non-decreasing for i = 1, · · · , n and j = 1, · · · ,m respectively.

4.2 One-Dimensional Interpolation

Once a Hilbert index has been associated with each datum, interpolation can
proceed using any 1D interpolation method. For this study 1D piecewise constant
and 1D piecewise linear interpolation (described in Section 2), denoted Hilbert-
Const and Hilbert-Linear respectively are used. Both these methods are trivially
simple to implement and due to their simplicity they are amenable to further
analysis which can be achieved without the need of a ground truth function to
interpolate, see Section 6.

4.3 Aggregation

Let g denote a function that encapsulates the two stages described above, such
that interpolated value for the query site qj is

f̂(qj) = g(qj ,x1...m, z1...m, h,Q1, e).

WhereQ1 denotes a plug-in one-dimensional interpolation function and e a shape
preserving transformation. Recalling that x1...m, z1...m are the data-site locations



(a) Ground Truth (b) Constant (c) Linear (d) Natural Neigh-
bour

Fig. 4: Bivariate Gaussian test function and interpolated functions using stan-
dard 2D approaches based on data-sites located on a regular 21× 21 grid.

and data-site values respectively; h is the Hilbert mapping, note that this can
be replaced with other space-filling curve mappings.

Let e1, . . . , eη be identically and independently drawn legitimate transforma-
tions, further details for the sampling regime can be found in [16]. The aggregated
interpolated value for the query site qj is simply the average interpolated value,
i.e.

f̂(qj) =
1

η

η∑
k=1

g(qj ,x1...m, z1...m, h,Q1, ek).

5 Experiments

The following experimental design has been motivated by [6]. The interpolation
schemes are tested by evaluating the mean squared error (MSE) and the maxi-
mum absolute error (Max Error) between interpolated values and a ground truth
function. For the ground truth Franke’s function [6] has been selected, see Fig.
6(a).

It is also instructive to visualise the interpolation, for this task a bivariate
Gaussian is used see Fig. 4(a). The experiments are organised as follows. First the
focus is on visualising the resulting interpolations, then a more formal approach
to evaluating the interpolation methods is performed. Henceforth piecewise linear
and piecewise constant shall be referred to as linear and constant respectively.

5.1 Visualising the Interpolated Function

This experiment uses data-sites located on a 21 × 21 regular grid spanning the
entire region of interest. It should be noted that for the special case of data-sites
located on regular grids there exist specific interpolation schemes that should
do better than the general scattered data interpolation approaches shown here.
However a regular grid generates easily interpretable images. Fig. 4 shows the
resulting interpolation when using the spatial interpolation techniques described
in Section 2.



(a) 1 iteration (b) 100 iterations (c) 1000 iterations (d) 10,000 iterations

(e) 1 iteration (f) 100 iterations (g) 1000 iterations (h) 10,000 iterations

Fig. 5: Hilbert-Const Interpolation of a Bivariate Gaussian based on data-sites
located on a regular 21× 21 grid. Top row Hilbert-Const Interpolation, bottom
row Hilbert-Linear Interpolation.

It is clear that constant interpolation, Fig. 4(b), does a poor job of recon-
structing the ground truth. Linear interpolation, Fig. 4(c) does much better
but with strong visible linear artifacts. Finally in Fig. 4(d) natural neighbour
interpolation is much smoother. Although artifacts arising from the data-site
locations are visible.

Fig. 5(a-d) shows the interpolated function using Hilbert-Const with increas-
ing number of iterations. Fig. 5(a) shows the interpolated function after one it-
eration is similar to constant interpolation shown in Fig. 4(b). As the number of
iterations increases, the interpolated function becomes less noisy and at 10,000
iterations the function is visibly similar to natural neighbour interpolation but
with more pronounced bumps.

Fig. 5(e-h) shows the interpolated function Hilbert-Linear. The first iteration
may look similar Hilbert-Const however closer inspection should reveal that there
are no flat regions on the tall peaks. At 10,000 iterations the interpolated function
appears smoother than both natural neighbour and Hilbert-Const. In contrast
to both natural neighbour and Hilbert-Const an artifact due to the data-site
locations manifests itself as small dimples.

Franke’s bivariate function, shown in Fig. 6(a), is a more challenging surface
to interpolate. Fig. 6 also shows the interpolated functions using the interpolation
methods described in Section 2 and the resulting interpolated function after the
first and 10, 000th iteration for both Hilbert-Const and Hilbert-Linear. Visually
these results are consistent with those of the bivariate Gaussian.



(a) Ground Truth (b) Constant (c) Linear (d) Natural Neigh-
bour

(e) Hilbert-Const
1 iteration

(f) Hilbert-Const
10,000 iterations

(g) Hilbert-Linear 1
iteration

(h) Hilbert-Linear
10,000 iterations

Fig. 6: Franke’s bivariate test function and interpolated functions using standard
2D approaches based on data-sites located on a regular 21 × 21 grid.

5.2 Scattered Data Interpolation

The following experiments focus on more quantitative measures of the quality
of an interpolation. Scattered data-sites are generated by selecting uniformly at
random a location on a 2000× 2000 grid without replacement, this is to ensure
that all the data-site locations are unique. The number of data-sites used in
the experiments are 100, 300 and 500. Finally, for completeness, the data-sites
using regular locations used in the first experiment will also be used (which has
441 data-sites). The number of aggregation iterations η is set to 50,000. Natural
neighbour interpolation is not defined outside the convex hull of data-sites, so to
make all the results commensurate only query sites within the convex hull are
included in the analysis.

Table 1 shows the evaluations for the three standard interpolation methods
(natural neighbor interpolation is denoted NN in this table) and the two pro-
posed approaches for different sets of data-site locations and number. Notable
observations include the following. Constant Interpolation in 2D is consistently
poor; Linear interpolation in 2D in most cases performs better than natural
neighbour.

Hilbert-Const has lower Max Error than natural neighbour for all scattered
data sets, but natural neighbour performs consistently better with respect to



Table 1: Performance of interpolation schemes with respect to Maximum Abso-
lute Error and for Mean Squared Error for the Franke Function.

# Data-sites 100 300 500 441 Regular

Max Err MSE Max Err MSE Max Err MSE Max Err MSE

Constant 2D 0.421 0.00463 0.219 0.00147 0.173 0.000821 0.119 0.000529
Linear 2D 0.229 0.00181 0.139 0.000313 0.109 8.04e-05 0.0185 1.24e-05

NN 2D 0.249 0.00202 0.147 0.000332 0.0965 7.9e-05 0.0188 1.2e-05

Hilbert-Const 0.234 0.00239 0.117 0.000407 0.0635 0.000151 0.0217 2.03e-05
Hilbert-Linear 0.308 0.00381 0.0975 0.000516 0.0704 0.000135 0.0279 4.85e-05

MSE. The performance difference between Hilbert-Linear and Hilbert-Const is
somewhat inconclusive but it appears that Hilbert-Const performs better.

A key issue with the proposed approach is the number of aggregation itera-
tions required to produce a reasonable interpolation. Fig. 7 shows the number
of aggregation iterations against MSE and Max Error for the Hilbert-Const in-
terpolation of Franke’s function. The convergence is largely independent of the
number of data-sites and there is little to gain after around 1000 iterations. A
similar result has been obtained for Hilbert-Linear interpolation.

Fig. 7: Number of aggregation iterations versus MSE (leftmost graph) and Max
Error (rightmost graph). Note the x-axis has a base-10 log scale.

In this section, analysis of interpolating specific functions was considered. In
the next section the proposed approach is re-interpreted so that we can reason
about it by considering only the location of the data-sites, i.e without the need
of a ground truth function to interpolate.

6 Further Analysis

Hilbert-Const interpolation has a particularly simple interpretation. It can be
viewed as a simple weighted sum of data-site values. The weight denoted pi is



(a) 2D heatmap (b) 3D

Fig. 8: Probability mass function showing the probability that the nearest neigh-
bour is the data-site denoted by an ×.

the probability that data-site xi is the nearest neighbour to qj along the Hilbert
curve under the Monte Carlo sampling described in the Aggregation Section, i.e.

f̂(qj) =

n∑
i

pizi (1)

Consider the case where there are only two data-sites, denoted × and ·,
located within a region of interest shown in Fig. 8(a) (ignoring the heatmap
for the moment). Under Euclidean distance, locations that are closest to the
data-site denoted by an × are to the left of the dashed line.

The heatmap represents all the possible query site locations within the region
of interest and shows the probability the × data-site is the nearest neighbour
under the Monte Carlo sampling, with η = 50, 000. Fig. 8(b) shows the same
probability mass function but in 3D. It is clear that there is a discontinuity at
the peak (corresponding to the × data-site).

Referring back to Equation 1, for the interpolated function f̂(·) to be con-
tinuous, both pi and zi are required to spatially continuous over the region of
interest. Assuming that the function to be interpolated is indeed continuous, i.e.
zi is continuous, then pi needs to be continuous. As has been noted, pi is not
continuous at data-sites. Hence the interpolated function will not be continuous
at data-sites. Note that natural neighbour interpolation also has this issue. The
smoothness of probability mass function elsewhere in Fig. 8(b) is consistent with
pi being continuous everywhere apart from at data-sites.

A final observation from the heatmap in Fig. 8(a) is the probability mass
function behaves sensibly since in general the closer to data-site × the higher
the probability. Fig. 9 shows the average number of data-sites that contribute to
a query location. For the scattered data it is clear the average number is largely



(a) Hilbert-Const (b) Hilbert-Linear

Fig. 9: Number of non zero weighted data-sites for each query location. Hilbert-
Linear has more than Hilbert-Const since for linear interpolation uses two data-
sites for interpolation whereas constant only requires one.

independent of the increasing number of data-sites. This is a crucial observation
for the utility of the proposed approach for large datasets. It suggests that the
interpolation is local to the query data-site.

There is one exception, query points near the boundary of the region of
interest. Fig. 9 show there is a large variance in the number contributing data-
sites per query site. This phenomena is due to the space-filling curve exiting
region of interest and entering at some other location along the boundary. This
behaviour is not necessarily wrong, it is making the assumption that the function
is homogeneous around the boundary. One way to remove this edge effect is to
introduce a post-processing step that keeps the closest w contributing data-sites
for each query site near the boundary, where w is the overall mean.

7 Conclusion and Future Work

This paper proposed a novel framework to interpolating scattered data. The
approach is conceptually easy to understand and straightforward to code and
delivers results that are in some ways commensurate with natural neighbour
interpolation. If radix sort is used, then the computational complexity of the
algorithm is linear with respect to input size. More specifically it is O(ηmdk)
for d-dimensional data where each coordinate is represented using k bits and
the combined total of query and data points is m. The number of iterations η is
typically large but remains constant with increasing size of the data set. Hence
it is likely that this approach will be useful in circumstances where interpolation
is required for very large datasets. Note that η is likely to grow exponentially
with respect to d, its precise relationship is left for future work.



The 1D interpolation schemes plugged in to the framework were selected
for their simplicity and their amenability to further analysis. However more
sophisticated methods could be used. For example basing the interpolation on
1D wavelets [5].

This framework can be extended to perform density estimation by simply
replacing the interpolation function with a 1D density estimator. This is possible
since the Hilbert curve has the property that it is measure preserving, which in
the 2D case means that equal lengths along the curve correspond to equal areas.
In his context the approach would fit in with the class of Monte Carlo density
estimators such as random average shifted histograms [2].
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