95 research outputs found

    PATTERNS OF UNREPAIRED SHELL DAMAGE IN RECENT BRACHIOPODS FROM FIORDLAND (NEW ZEALAND)

    Get PDF
    In order to provide quantitative data concerning patterns of shell breakage and repair in rhynchonelliform brachiopods, we studied undisturbed death assemblages from a New Zealand fiord complex where three species of terebratulide and one rhynchonellide occur in dense mixed patches on the near vertical walls. Proportions of damaged (both repaired and non-repaired) individuals varied between both taxa and sampling site. However, the general observation was that few individuals show signs of having been able to repair damage but the proportion of individuals showing unrepaired, and hence presumably fatal, breakages was higher (up to 76% in Magasella sanguinea from one sample from Tricky Cove in Doubtful Sound). Damage was mostly concentrated around the anterior margins and affected both valves and is consistent with having been clamped between a set of either jaws or claws. Potential culprits include fish (wrasse), rock lobsters and echinoids. As yet it is unclear whether the damage results from deliberate feeding activity or as collateral damage from grazers feeding on other organisms on the fiord walls which may allow secondary predation by asteroids. The net effect is, however, the same, in that the damage appears to have been fatal. More structured sampling is now required to understand the spatial variation in this damage and mortality, and also to establish the culprits with more certainty

    Mitochondrial plasticity in brachiopod ( Liothyrella spp.) smooth adductor muscle as a result of season and latitude

    Get PDF
    Habitat temperature and mitochondrial volume density (Vv(mt,mf)) are negatively correlated in fishes, while seasonal acclimatization may increase Vv(mt,mf) or the surface density of the mitochondrial cristae (Sv(im,mt)). The effect of temperature on invertebrate mitochondria is essentially unknown. A comparison of two articulate brachiopod species, Liothyrella uva collected from Rothera Station, Antarctica in summer 2007, and Liothyrella neozelanica collected from Fiordland, New Zealand in winter 2007 and summer 2008, revealed a higher Vv(mt,mf) in the Antarctic brachiopod. The Sv(im,mt) was, however, significantly lower, indicating the Antarctic brachiopods have more, less reactive mitochondria. L. uva, from the colder environment, had larger adductor muscles in both absolute and relative terms than the temperate L. neozelanica. Furthermore, a seasonal comparison (winter vs. summer) in L. neozelanica showed that the absolute and relative size of the adductor increased in winter, Vv(mt,mf) was unchanged, and Sv(im,mt) was significantly increased. Thus, seasonal acclimatization to the cold resulted in the same number of more reactive mitochondria. L. neozelanica was clearly able to adapt to seasonal changes using a different mechanism, i.e. primarily through regulation of cristae surface area as opposed to mitochondrial volume density. Furthermore, given the evolutionary age of these living fossils (i.e. approximately 550million years), this suggests that mitochondrial plasticity has roots extending far back into evolutionary histor

    Developing an effective marine eDNA monitoring: eDNA detection at pre-outbreak densities of corallivorous seastar (Acanthaster cf. solaris)

    Get PDF
    Outbreaks of the corallivorous Crown-of-Thorns Seastar (CoTS) Acanthaster cf. solaris contribute significantly to coral reef loss. Control of outbreaks is hampered because standard monitoring techniques do not detect outbreaks at early (low density) stages, thus preventing early intervention. We previously demonstrated that eDNA monitoring can detect CoTS at intermediate densities. Here, we test whether detection probability can be improved by (i) targeted site selection or collection at specific times and (ii) moving from an average eDNA copy number approach (based on the limit of quantification) to a presence/absence approach (based on the limit of detection). Using a dataset collected over three years and multiple reef sites, we demonstrated that adding water residence age, sea surface level and temperature into generalized linear models explained low amounts of variance of eDNA copy numbers. Site specific CoTS density, by contrast, was a significant predictor for eDNA copy numbers. Bayesian multi-scale occupancy modelling of the presence/absence data demonstrated that the probability of sample capture (theta) on most reefs with intermediate or high CoTS densities was >0.8. Thus, confirming CoTS presence on these reefs would only require 2-3 samples. Sample capture decreased with decreasing CoTS density. Collecting ten filters was sufficient to reliably (based on the lower 95 % Credibility Interval) detect CoTS below nominal outbreak levels (3 Ind. ha-1). Copy number-based estimates may be more relevant to quantify CoTS at higher densities. Although water residence age did contribute little to our models, sites with higher residence times may serve as sentinel sites accumulating eDNA. The approach based on presence or absence of eDNA facilitates eDNA monitoring to detect CoTS densities below outbreak thresholds and we continue to further develop this method for quantification

    Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal Nacellid limpets to climate change

    Get PDF
    The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions

    Ultrastructure of pedal muscle as a function of temperature in nacellid limpets

    Get PDF
    Temperature and mitochondrial plasticity are well studied in fishes, but little is known about this relationship in invertebrates. The effects of habitat temperature on mitochondrial ultrastructure were examined in three con-familial limpets from the Antarctic (Nacella concinna), New Zealand (Cellana ornata), and Singapore (Cellana radiata). The effects of seasonal changes in temperature were also examined in winter and summer C. ornata. Stereological methods showed that limpet pedal myocytes were 1-2 orders of magnitude smaller in diameter (≈3.5μm) than in vertebrates, and that the diameter did not vary as a function of temperature. Mitochondrial volume density (Vv(mt,f)) was approximately 2-4 times higher in N. concinna (0.024) than in the other species (0.01 and 0.006), which were not significantly different from each other. Mitochondrial cristae surface density (Sv(im,mt)) was significantly lower in summer C. ornata (24.1±0.50μm2μm−3) than both winter C. ornata (32.3±0.95μm2μm−3) and N. concinna (34.3±4.43μm2μm−3). The surface area of mitochondrial cristae per unit fibre volume was significantly higher in N. concinna, due largely to the greater mitochondrial volume density. These results and previous studies indicate that mitochondrial proliferation in the cold is a common, but not universal response by different species from different thermal habitats. Seasonal temperature decreases on the other hand, leading preferentially to an increase in cristae surface density. Stereological measures also showed that energetic reserves, i.e. lipid droplets and glycogen in the pedal muscle changed greatly with season and species. This was most likely related to gametogenesis and spawnin

    Fast Changes in the Bioenergetic Balance of Krill in Response to Environmental Stress

    Get PDF
    A Dynamic Energy Budget (DEB) model is applied to predict rapid metabolic shifts in an ecologically important krill, Nyctiphanes australis, in response to temperature and ultraviolet radiation (UVR). Specifically, we predict changes in fatty acids, amino acids and respiration rate in response to several light and temperature treatments. Environmental variability can alter the metabolic equilibrium and the mechanisms marine ectotherms used to obtain energy, which is a topical point given the current level of environmental change. Environmental variability also includes multiple stressors, which can have additive, antagonistic or synergistic effects on metabolism. In consequence, disentangling and quantifying the effects of multiple stressors on metabolism and the energy balance of ecthothermal species, such as krill, can be challenging. Here we apply a DEB model to direct measurements of fatty acids, amino acids and respiration rate of krill experimentally exposed simultaneously to several doses of UVR and temperatures. We found that on average light escalates metabolic rates by a factor of two, and temperature has an effect 1.35 times greater than the effect of light over respiration rates at temperatures from 9 to 19°C. The DEB model predicted shifts in metabolic function and indicated that the combined effect of light and elevated temperatures decrease the total of fatty acid concentrations at a higher rate than amino acids when krill are exposed to environmentally relevant temperatures and light treatments. Our results demonstrate that, when krill experience warmer conditions and higher levels of solar radiation, the mobilization of energy-relevant metabolites from the reserves increases by up to 36% and increase the total energetic cost by up to 45%. These findings suggest that ectothermal species with a fast metabolism, such as krill, quickly deplete energy reserves to compensate for changes in the environment. This renders krill susceptible to the effects of climate variability if the current climatic trend for the region continues to show temperature increases, even if solar radiation levels remain unchanged.publishedVersio

    Hematological analysis of the ascidian Botrylloides leachii (Savigny, 1816) during whole-body regeneration

    Get PDF
    Whole-body regeneration (WBR)—the formation of an entire adult from only a small fragment of its own tissue—is extremely rare among chordates. Exceptionally, in the colonial ascidian Botrylloides leachii (Savigny, 1816) a fully functional adult is formed from their common vascular system after ablation of all adults from the colony in just 10 d, thanks to their high blastogenetic potential. While previous studies have identified key genetic markers and morphological changes, no study has yet focused on the hematological aspects of regeneration despite the major involvement of the remaining vascular system and the contained hemocytes in this process. To dissect this process, we analyzed colony blood flow patterns using time-lapse microscopy to obtain a quantitative description of the velocity, reversal pattern, and average distance traveled by hemocytes. We also observed that flows present during regeneration are powered by temporally and spatially synchronized contractions of the terminal ampullae. In addition, we revised previous studies of B. leachii hematology as well as asexual development using histological sectioning and compared the role played by hemocytes during WBR. We found that regeneration starts with a rapid healing response characterized by hemocyte aggregation and infiltration of immunocytes, followed by increased activity of hemoblasts, recruitment of macrophage-like cells for clearing the tissues of debris, and their subsequent disappearance from the circulation concomitant with the maturation of a single regenerated adult. Overall, we provide a detailed account of the hematological properties of regenerating B. leachii colonies, providing novel lines of inquiry toward the decipherment of regeneration in chordates

    Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: a review

    Get PDF
    Most marine organisms present an indirect lifecycle where a planktonic larval stage reaches competency before settling to the substrate and metamorphosing. Despite the critical importance of these early life history stages, little is known about how global change-related stressors, in particular ocean acidification (OA), affect marine larval settlement and metamorphosis. To date, 48 studies have investigated the effects of OA on larval settlement, focussing mostly on tropical corals (16), echinoderms (11) and fish (8). Most studies show negative effects of OA during settlement and post-settlement processes. For instance, reduced settlement is typically seen along natural pH gradients and in experimentally lowered pH treatments. This generally results in reduced settlement selectivity and metamorphosis and poorer post-settlement fitness. Carryover effects of OA exposure can also occur, with larval environmental history influencing early post-settlement performance. We conclude that OA may (1) alter larval supply for settlement by altering horizontal swimming be haviour or vertical migration; (2) directly influence settlement success through changes in the nature and distribution of suitable settlement substrates (e.g. biofilm, crustose coralline algae); and (3) mediate carryover effects at settlement by altering larval development or larval energy budgets. In contrast to fish larvae, there is little evidence for most invertebrate larvae that their perception of settlement cues is directly influenced by reduced pH. A summation of how OA affects the settlement and metamorphosis of marine invertebrates is timely, since altered settlement rates will influence the future distributions, abundances and ecology of marine benthic communities

    Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean

    Get PDF
    Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth–ocean–atmosphere dynamic exchange of elements. The ratios’ dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios’ variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect

    Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

    Get PDF
    Background: As the oceans simultaneously warm, acidify and increase in P-CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming.Methodology/Principal Findings: We examined the interactive effects of near-future ocean warming and increased acidification/P-CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P-CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P-CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P-CO2 treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth.Conclusions and Significance: This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P-CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations
    corecore