53 research outputs found

    Microglial brain region−dependent diversity and selective regional sensitivities to aging

    Get PDF
    Microglia play critical roles in neural development, homeostasis and neuroinflammation and are increasingly implicated in age-related neurological dysfunction. Neurodegeneration often occurs in disease-specific spatially-restricted patterns, the origins of which are unknown. We performed the first genome-wide analysis of microglia from discrete brain regions across the adult lifespan of the mouse and reveal that microglia have distinct region-dependent transcriptional identities and age in a regionally variable manner. In the young adult brain, differences in bioenergetic and immunoregulatory pathways were the major sources of heterogeneity and suggested that cerebellar and hippocampal microglia exist in a more immune vigilant state. Immune function correlated with regional transcriptional patterns. Augmentation of the distinct cerebellar immunophenotype and a contrasting loss in distinction of the hippocampal phenotype among forebrain regions were key features during ageing. Microglial diversity may enable regionally localised homeostatic functions but could also underlie region-specific sensitivities to microglial dysregulation and involvement in age-related neurodegeneration

    ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats.

    Get PDF
    Stroke causes CNS injury associated with strong fast microglial activation as part of the inflammatory response. In rat models of stroke, sulphonylurea receptor blockade with glibenclamide reduced cerebral edema and infarct volume. We postulated that glibenclamide administered during the early stages of stroke might foster neuroprotective microglial activity through ATP-sensitive potassium (KATP) channel blockade. We found in vitro that BV2 cell line showed upregulated expression of KATP channel subunits in response to pro-inflammatory signals and that glibenclamide increases the reactive morphology of microglia, phagocytic capacity and TNFα release. Moreover, glibenclamide administered to rats 6, 12 and 24 h after transient Middle Cerebral Artery occlusion improved neurological outcome and preserved neurons in the lesioned core three days after reperfusion. Immunohistochemistry with specific markers to neuron, astroglia, microglia and lymphocytes showed that resident amoeboid microglia are the main cell population in that necrotic zone. These reactive microglial cells express SUR1, SUR2B and Kir6.2 proteins that assemble in functional KATP channels. These findings provide that evidence for the key role of KATP channels in the control of microglial reactivity are consistent with a microglial effect of glibenclamide into the ischemic brain and suggest a neuroprotective role of microglia in the early stages of stroke

    Varia 2020

    No full text
    Communiquer, Revue de communication sociale et publique contribue à une meilleure compréhension des phénomènes de communication humains. Cette thématique est abordée dans son ensemble, qu'elle soit organisationnelle, interculturelle et internationale, interpersonnelle et de groupe, marketing et publicitaire, politique ou qu'elle touche à la santé, l'environnement, les technologies, la communication scientifique, les relations publiques, sans que ces indications ne soient exhaustives
    corecore