422 research outputs found
Interactive effects of soil temperature and moisture on Concord grape root respiration
Root respiration has important implications for understanding plant growth as well as terrestrial carbon flux with a changing climate. Although soil temperature and soil moisture often interact, rarely have these interactions on root respiration been studied. This report is on the individual and combined effects of soil moisture and temperature on respiratory responses of single branch roots of 1-year-old Concord grape (Vitis labruscana Bailey) vines grown in a greenhouse. Under moist soil conditions, root respiration increased exponentially to short-term (1 h) increases in temperature between 10 °C and 33 °C. Negligible increases in root respiration occurred between 33 °C and 38 °C. By contrast to a slowly decreasing Q10 from short-term temperature increases, when roots were exposed to constant temperatures for 3 d, the respiratory Q10 between 10 °C and 30 °C diminished steeply with an increase in temperature. Above 30 °C, respiration declined with an increase in temperature. Membrane leakage was 89-98% higher and nitrogen concentration was about 18% lower for roots exposed to 35 °C for 3 d than for those exposed to 25 °C and 15 °C. There was a strong interaction of respiration with a combination of elevated temperature and soil drying. At low soil temperatures (10 °C), respiration was little influenced by soil drying, while at moderate to high temperatures (20 °C and 30 °C), respiration exhibited rapid declines with decreases in soil moisture. Roots exposed to drying soil also exhibited increased membrane leakage and reduced N. These findings of acclimation of root respiration are important to modelling respiration under different moisture and temperature regime
Economics of Drip Irrigation for Juice Grape Vineyards in New York State
R.B. 99-01Grape growers need investment and cost guidelines for drip irrigation to evaluate the economics of getting vines into production as quickly as possible and to avoid periods of drought during the productive life of the vineyard. The benefits of irrigation may include: better vine survival, earlier fruit production, greater yields, more efficient distribution of nutrients, less plant stress, reduced yield variability and improved fruit quality. Research was undertaken to determine drip irrigation investment and annual costs. This project was designed to assist growers in determining the investment, fixed and variable annual costs and expected returns from drip irrigation. Irrigation suppliers provided typical equipment needs and investment costs for various drip irrigation designs. Economic worksheets are provided to assist growers in estimating fixed and variable costs of drip irrigation. The economics of yield data were applied to replicated multiyear irrigation studies to assist growers in determining yield response from drip irrigation. Net present value (NPV) methodology was used to determine the discounted break-even investment results from published responses to drip irrigation. Growers with typical drip irrigation systems and various water sources can expect investments in drip irrigation of 1,150 per acre with 10 acre blocks of vines. Based upon eight years of data from trials in Fredonia, NY, in the Lake Erie grape belt, average yield increases due to irrigation on establishment and growing of Niagara grapes were 2.8 ton per production year per acre, resulting in a break-even investment of approximately 200 per acre which was well below the total cost of a complete microirrigation drip system. On a new planting of Concords, with droughty soils, the analysis may very well show cost effectiveness. Growers who were interviewed were unable to quantify the benefits and costs of drip irrigation but were pleased with their irrigated yields and brix responses from drip irrigation. This analysis has provided the economic rationale for the investment in microirrigation with some varieties and under certain soil types
The Draft Genome and Transcriptome of Panagrellus redivivus Are Shaped by the Harsh Demands of a Free-Living Lifestyle
Nematodes compose an abundant and diverse invertebrate phylum with members inhabiting nearly every ecological niche. Panagrellus redivivus (the “microworm”) is a free-living nematode frequently used to understand the evolution of developmental and behavioral processes given its phylogenetic distance to Caenorhabditis elegans. Here we report the de novo sequencing of the genome, transcriptome, and small RNAs of P. redivivus. Using a combination of automated gene finders and RNA-seq data, we predict 24,249 genes and 32,676 transcripts. Small RNA analysis revealed 248 microRNA (miRNA) hairpins, of which 63 had orthologs in other species. Fourteen miRNA clusters containing 42 miRNA precursors were found. The RNA interference, dauer development, and programmed cell death pathways are largely conserved. Analysis of protein family domain abundance revealed that P. redivivus has experienced a striking expansion of BTB domain-containing proteins and an unprecedented expansion of the cullin scaffold family of proteins involved in multi-subunit ubiquitin ligases, suggesting proteolytic plasticity and/or tighter regulation of protein turnover. The eukaryotic release factor protein family has also been dramatically expanded and suggests an ongoing evolutionary arms race with viruses and transposons. The P. redivivus genome provides a resource to advance our understanding of nematode evolution and biology and to further elucidate the genomic architecture leading to free-living lineages, taking advantage of the many fascinating features of this worm revealed by comparative studies
Circulating sex steroids during pregnancy and maternal risk of non-epithelial ovarian cancer.
BACKGROUND: Sex steroid hormones have been proposed to play a role in the development of non-epithelial ovarian cancers (NEOC) but so far no direct epidemiological data are available.METHODS: A case-control study was nested within the Finnish Maternity Cohort, the world's largest bio-repository of serum specimens from pregnant women. Study subjects were selected among women who donated a blood sample during a singleton pregnancy that led to the birth of their last child preceding diagnosis of NEOC. Case subjects were 41 women with sex-cord stromal tumors (SCST) and 21 with germ cell tumors (GCT). Three controls, matching the index case for age, parity at the index pregnancy, and date at blood donation were selected (n=171). Odds ratios (OR) and 95% confidence intervals (CI) associated with concentrations of testosterone, androstenedione, 17-OH-progesterone, progesterone, estradiol and sex hormone binding globulin (SHBG) were estimated through conditional logistic regression.RESULTS: For SCST, doubling of testosterone, androstenedione and 17-OH-progesterone concentrations were associated with about 2-fold higher risk of SCST [ORs and 95% CI of 2.16 (1.25-3.74), 2.16 (1.20-3.87), and 2.62 (1.27-5.38), respectively]. These associations remained largely unchanged after excluding women within 2, 4 or 6 years lag-time between blood donation and cancer diagnosis. Sex steroid hormones concentrations were not related to maternal risk of GCT.CONCLUSIONS: This is the first prospective study providing initial evidence that elevated androgens play a role in the pathogenesis of SCST. Impact: Our study may note a particular need for larger confirmatory investigations on sex steroids and NEOC
Effects of the whole vine versus single shoot-crop level on fruit growth in Vitis labruscana 'Concord'
The fruit growth response to the whole vine and single shoot crop level was studied in Vitis labruscana 'Concord' grown in the North-Eastern United States. In vines thinned to lower and higher yields (equivalent to 12 and 21 t·ha-1), different number of clusters per shoot were retained after cluster thinning one week after set. Results showed that the seasonal accumulation of berry dry weight, fruit fresh weight, and the berry total soluble solids at harvest were only affected by the whole vine crop level. This suggests that under the conditions of this experiment shoots are not autonomous in terms of carbon partitioning to the fruit. Hence, crop level effects on fruit development can be considered and modelled on a whole vine basis.
Metabolic effects of elevated temperature on organic acid degradation in ripening <em>Vitis vinifera</em> fruit
First published online: September 1, 2014Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2-4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4-6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4-10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4-6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit.C. Sweetman, V. O. Sadras, R. D. Hancock, K. L. Soole and C. M. For
Targeted Deletion of the Metastasis-Associated Phosphatase Ptp4a3 (PRL-3) Suppresses Murine Colon Cancer
Ptp4a3 (commonly known as PRL-3) is an enigmatic member of the Ptp4a family of prenylated protein tyrosine phosphatases that are highly expressed in many human cancers. Despite strong correlations with tumor metastasis and poor patient prognosis, there is very limited understanding of this gene family's role in malignancy. Therefore, we created a gene-targeted murine knockout model for Ptp4a3, the most widely studied Ptp4a family member. Mice deficient for Ptp4a3 were grossly normal. Fewer homozygous-null males were observed at weaning, however, and they maintained a decreased body mass. Although Ptp4a3 is normally associated with late-stage cancer and metastasis, we observed increased Ptp4a3 expression in the colon of wildtype mice immediately following treatment with the carcinogen azoxymethane. To investigate the role of Ptp4a3 in malignancy, we used the most commonly studied murine colitis-associated colon cancer model. Wildtype mice treated with azoxymethane and dextran sodium sulfate developed approximately 7-10 tumors per mouse in the distal colon. The resulting tumor tissue had 4-fold more Ptp4a3 mRNA relative to normal colon epithelium and increased PTP4A3 protein. Ptp4a3-null mice developed 50% fewer colon tumors than wildtype mice after exposure to azoxymethane and dextran sodium sulfate. Tumors from the Ptp4a3-null mice had elevated levels of both IGF1Rβ and c-MYC compared to tumors replete with Ptp4a3, suggesting an enhanced cell signaling pathway engagement in the absence of the phosphatase. These results provide the first definitive evidence implicating Ptp4a3 in colon tumorigenesis and highlight the potential value of the phosphatase as a therapeutic target for early stage malignant disease. © 2013 Zimmerman et al
The interaction of phylloxera infection, rootstock, and irrigation on young Concord grapevine growth
Concord roots are moderately resistant to phylloxera, which form nodosities on the fine roots and weaken the root system. Rootstocks and vineyard floor management both have the potential to eliminate or reduce the effect of phylloxera in New York Concord vineyards. Young, container-grown Concord grapevines were used to evaluate the interaction between rootstock (own-rooted, Couderc 3309), irrigation, and phylloxera infection on vine growth. Phylloxera inoculation alone caused a 21 % decrease in vine dry mass and lack of irrigation (mid-day stem water potential: -0.9 to -1.0 M Pa) alone caused a 34 % decrease in vine dry mass. The combination of phylloxera stress and water stress was additive and caused a 54 % decrease in vine dry mass. Because C3309 rootstock is resistant to phylloxera, the grafted vines showed a response to irrigation but not phylloxera inoculation. This container study shows the potential benefits of irrigating own-rooted Concord grapevines or the use of rootstocks without irrigation to withstand phylloxera infection.
Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors
Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. © 2013 den Hartog et al
Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases
Age-associated neurodegenerative disorders such as Alzheimer’s disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuroprotective compound screening. Here we describe how C. elegans has been used to model various human ageing-associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in these worm models and so may have translational potential
- …
