1,624 research outputs found

    The formation of the eccentric-orbit millisecond pulsar J1903+0327 and the origin of single millisecond pulsars

    Get PDF
    The millisecond pulsar J1903+0327 is accompanied by an ordinary G-dwarf star in an unusually wide (Porb≃95.2P_{\rm orb} \simeq 95.2\,days) and eccentric (e≃0.44e \simeq 0.44) orbit. The standard model for producing MSPs fails to explain the orbital characteristics of this extraordinary binary, and alternative binary models are unable to explain the observables. We present a triple-star model for producing MSPs in relatively wide eccentric binaries with a normal (main-sequence) stellar companion. We start from a stable triple system consisting of a Low-Mass X-ray Binary (LMXB) with an orbital period of at least 1 day, accompanied by a G-dwarf in a wide and possibly eccentric orbit. Variations in the initial conditions naturally provide a satisfactory explanation for the unexplained triple component in the eclipsing soft X-ray transient 4U~2129+47 or the cataclysmic variable EC 19314-5915. The best explanation for J1903, however, results from the expansion of the orbit of the LMXB, driven by the mass transfer from the evolving donor star to its neutron star companion, which causes the triple eventually to becomes dynamically unstable. Using numerical computations we show that, depending on the precise system configuration at the moment the triple becomes dynamically unstable, the ejection of each of the three components is possible. If the donor star of the LMXB is ejected, a system resembling J1903, will result. If the neutron star is ejected, a single MSP results. This model therefore also provides a straightforward mechanism for forming single MSP in the Galactic disk. We conclude that the Galaxy contains some 30--300 binaries with characteristics similar to J1903, and about an order of magnitude fewer single millisecond pulsars produced with the proposed triple scenario.Comment: ApJ accepted for publicatio

    Affordable In-Space Transportation

    Get PDF
    Current and proposed launch systems will provide access to low-Earth orbit (LEO), and destinations beyond LEO, but the cost of delivering payloads will preclude the use of these services by many users. To develop and encourage revolutionary commercial utilization of geosynchronous orbit (GEO) and to provide an affordable means to continue NASA space science and exploration missions, the transportation costs to in-space destinations must be reduced. The principal objective of this study was to conceptually define three to four promising approaches to in-space transportation for delivery of satellites and other payloads, 3,000- to 10,000-lb class, to GEO destinations. This study established a methodology for evaluating in-space transportation systems based on life-cycle cost. The reusable concepts seemed to fare better in the evaluation than expendable, since a major driver in the life-cycle cost was the stage production cost

    DIFFICULTÉS DE LA PARTICIPATION EN RECHERCHE- ACTION : retour d'expĂ©riences de modĂ©lisation d'accompagnement en appui Ă  l'amĂ©nagement du territoire au SĂ©nĂ©gal et Ă  la RĂ©union

    Get PDF
    International audienceComment aider les institutions et acteurs locaux à investir davantage les processus d'affectation des terres pour aménager leur territoire ? La décentralisation de l'aménagement du territoire engagée à la Réunion et au Sénégal est inachevée. Malgré l'arsenal législatif, les populations locales semblent peu impliquées dans les décisions les concernant en raison notamment de la difficulté à appréhender la complexité des systÚmes d'interactions entre dynamiques sociales et environnementales. Le projet Domino vise à accompagner les processus de décision en proposant aux acteurs de construire et d'explorer des scenarii prospectifs d'affectation des terres. Cette expérience de modélisation participative repose sur une dynamique partenariale complexe sur chaque terrain, source de difficultés. Conscients des dérives potentielles, nous discutons la nécessité de construire une démarche qualité de notre recherche-action. Mots clés : montage de partenariat, démarche qualité, modÚle, changement social, ComMod, interdisciplinarité, décentralisation, foncier, Sénégal, Réunio

    Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane

    Get PDF
    The plasma membrane is organized into various subdomains of clustered macromolecules. Such domains include adhesive structures (cellular synapses, substrate adhesions, and cell–cell junctions) and membrane invaginations (clathrin-coated pits and caveolae), as well as less well-defined domains such as lipid rafts and lectin-glycoprotein lattices. Domains are organized by specialized scaffold proteins including the intramembranous caveolins, which stabilize lipid raft domains, and the galectins, a family of animal lectins that cross-link glycoproteins forming molecular lattices. We review evidence that these heterogeneous microdomains interact to regulate substratum adhesion and cytokine receptor dynamics at the cell surface

    On the incidence of weak magnetic fields in DA white dwarfs

    Full text link
    Context: About 10% of white dwarfs have magnetic fields with strength in the range between about 10^5 and 3x10^8 G. It is not known whether the remaining white dwarfs are not magnetic, or if they have a magnetic field too weak to be detected with the techniques adopted in the large surveys. Aims. We describe the results of the first survey specifically devised to clarify the detection frequency of kG-level magnetic fields in cool DA white dwarfs. Methods: Using the FORS1 instrument of the ESO VLT, we have obtained Balmer line circular spectropolarimetric measurements of a small sample of cool (DA6 - DA8) white dwarfs. Using FORS and UVES archive data, we have also revised numerous white dwarf field measurements previously published in the literature. Results: We have discovered an apparently constant longitudinal magnetic field of \sim9.5 kG in the DA6 white dwarf WD2105-820. This star is the first weak-field white dwarf that has been observed sufficiently to roughly determine the characteristics of its field. The available data are consistent with a simple dipolar morphology with magnetic axis nearly parallel to the rotation axis, and a polar strength of \simeq 56 kG. Our re-evaluation of the FORS archive data for white dwarfs indicates that longitudinal magnetic fields weaker than 10 kG had previously been correctly identified in at least three white dwarfs. Conclusions: We find that the probability of detecting a field of kG strength in a DA white dwarf is of the order of 10% for each of the cool and hot DA stars. If there is a lower cutoff to field strength in white dwarfs, or a field below which all white dwarfs are magnetic, the current precision of measurements is not yet sufficient to reveal it.Comment: Accepted for publication in Astronomy & Astrophysic

    The Mid-Infrared Instrument for the James Webb Space Telescope, V: Predicted Performance of the MIRI Coronagraphs

    Full text link
    The imaging channel on the Mid-Infrared Instrument (MIRI) is equipped with four coronagraphs that provide high contrast imaging capabilities for studying faint point sources and extended emission that would otherwise be overwhelmed by a bright point-source in its vicinity. Such bright sources might include stars that are orbited by exoplanets and circumstellar material, mass-loss envelopes around post-main-sequence stars, the near-nuclear environments in active galaxies, and the host galaxies of distant quasars. This paper describes the coronagraphic observing modes of MIRI, as well as performance estimates based on measurements of the MIRI flight model during cryo-vacuum testing. A brief outline of coronagraphic operations is also provided. Finally, simulated MIRI coronagraphic observations of a few astronomical targets are presented for illustration

    Search for positively charged strangelets and other related results with E864 at the AGS

    Full text link
    We report on the latest results in the search for positively charged strangelets from E864's 96/97 run at the AGS with sensitivity of about 8×10−98\times 10^{-9} per central collision. This contribution also contains new results of a search for highly charged strangelets with Z=+3Z=+3. Production of light nuclei, such as 6He^6He and 6Li^6Li, is presented as well. Measurements of yields of these rarely produced isotopes near midrapidity will help constrain the production levels of strangelets via coalescence. E864 also measures antiproton production which includes decays from antihyperons. Comparisons with antiproton yields measured by E878 as a function of centrality indicate a large antihyperon-to-antiproton ratio in central collisions.Comment: 8 pages, 4 figures; Talk at SQM'98, Padova, Italy (July 20-24th, 1998

    Histone deacetylase 1 and 2 drive differentiation and fusion of progenitor cells in human placental trophoblasts

    Get PDF
    Cell fusion occurs when several cells combine to form a multinuclear aggregate (syncytium). In human placenta, a syncytialized trophoblast (syncytiotrophoblast) layer forms the primary interface between maternal and fetal tissue, facilitates nutrient and gas exchange, and produces hormones vital for pregnancy. Syncytiotrophoblast development occurs by differentiation of underlying progenitor cells called cytotrophoblasts, which then fuse into the syncytiotrophoblast layer. Differentiation is associated with chromatin remodeling and specific changes in gene expression mediated, at least in part, by histone acetylation. However, the epigenetic regulation of human cytotrophoblast differentiation and fusion is poorly understood. In this study, we found that human syncytiotrophoblast development was associated with deacetylation of multiple core histone residues. Chromatin immunoprecipitation sequencing revealed chromosomal regions that exhibit dynamic alterations in histone H3 acetylation during differentiation. These include regions containing genes classically associated with cytotrophoblast differentiation (TEAD4, TP63, OVOL1, CGB), as well as near genes with novel regulatory roles in trophoblast development and function, such as LHX4 and SYDE1. Prevention of histone deacetylation using both pharmacological and genetic approaches inhibited trophoblast fusion, supporting a critical role of this process for trophoblast differentiation. Finally, we identified the histone deacetylases (HDACs) HDAC1 and HDAC2 as the critical mediators driving cytotrophoblast differentiation. Collectively, these findings provide novel insights into the epigenetic mechanisms underlying trophoblast fusion during human placental development

    Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1

    Get PDF
    Both tyrosine-phosphorylated caveolin-1 (pY14Cav1) and GlcNAc-transferase V (Mgat5) are linked with focal adhesions (FAs); however, their function in this context is unknown. Here, we show that galectin-3 binding to Mgat5-modified N-glycans functions together with pY14Cav1 to stabilize focal adhesion kinase (FAK) within FAs, and thereby promotes FA disassembly and turnover. Expression of the Mgat5/galectin lattice alone induces FAs and cell spreading. However, FAK stabilization in FAs also requires expression of pY14Cav1. In cells lacking the Mgat5/galectin lattice, pY14Cav1 is not sufficient to promote FAK stabilization, FA disassembly, and turnover. In human MDA-435 cancer cells, Cav1 expression, but not mutant Y14FCav1, stabilizes FAK exchange and stimulates de novo FA formation in protrusive cellular regions. Thus, transmembrane crosstalk between the galectin lattice and pY14Cav1 promotes FA turnover by stabilizing FAK within FAs defining previously unknown, interdependent roles for galectin-3 and pY14Cav1 in tumor cell migration
    • 

    corecore