1,413 research outputs found
Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to beta Pictoris b and SPHERE observations
We aim to interpret future photometric and spectral measurements from these
instruments, in terms of physical parameters of the planets, with an
atmospheric model using a minimal number of assumptions and parameters.
We developed Exoplanet Radiative-convective Equilibrium Model (Exo-REM) to
analyze the photometric and spectro- scopic data of directly imaged planets.
The input parameters are a planet's surface gravity (g), effective temperature
(Teff ), and elemental composition. The model predicts the equilibrium
temperature profile and mixing ratio profiles of the most important gases.
Opacity sources include the H2-He collision-induced absorption and molecular
lines from eight compounds (including CH4 updated with the Exomol line list).
Absorption by iron and silicate cloud particles is added above the expected
condensation levels with a fixed scale height and a given optical depth at some
reference wavelength. Scattering was not included at this stage.
We applied Exo-REM to photometric and spectral observations of the planet
beta Pictoris b obtained in a series of near-IR filters. We derived Teff = 1550
+- 150 K, log(g) = 3.5 +- 1, and radius R = 1.76 +- 0.24 RJup (2-{\sigma} error
bars from photometric measurements). These values are comparable to those found
in the literature, although with more conservative error bars, consistent with
the model accuracy. We were able to reproduce, within error bars, the J- and
H-band spectra of beta Pictoris b. We finally investigated the precision to
which the above parameterComment: 15 pages, 14 figures, accepted by A&
Searching for faint companions with VLTI/PIONIER. I. Method and first results
Context. A new four-telescope interferometric instrument called PIONIER has
recently been installed at VLTI. It provides improved imaging capabilities
together with high precision. Aims. We search for low-mass companions around a
few bright stars using different strategies, and determine the dynamic range
currently reachable with PIONIER. Methods. Our method is based on the closure
phase, which is the most robust interferometric quantity when searching for
faint companions. We computed the chi^2 goodness of fit for a series of binary
star models at different positions and with various flux ratios. The resulting
chi^2 cube was used to identify the best-fit binary model and evaluate its
significance, or to determine upper limits on the companion flux in case of non
detections. Results. No companion is found around Fomalhaut, tau Cet and
Regulus. The median upper limits at 3 sigma on the companion flux ratio are
respectively of 2.3e-3 (in 4 h), 3.5e-3 (in 3 h) and 5.4e-3 (in 1.5 h) on the
search region extending from 5 to 100 mas. Our observations confirm that the
previously detected near-infrared excess emissions around Fomalhaut and tau Cet
are not related to a low-mass companion, and instead come from an extended
source such as an exozodiacal disk. In the case of del Aqr, in 30 min of
observation, we obtain the first direct detection of a previously known
companion, at an angular distance of about 40 mas and with a flux ratio of
2.05e-2 \pm 0.16e-2. Due to the limited u,v plane coverage, its position can,
however, not be unambiguously determined. Conclusions. After only a few months
of operation, PIONIER has already achieved one of the best dynamic ranges
world-wide for multi-aperture interferometers. A dynamic range up to about
1:500 is demonstrated, but significant improvements are still required to reach
the ultimate goal of directly detecting hot giant extrasolar planets.Comment: 11 pages, 6 figures, accepted for publication in A&
The Lie-Poisson structure of the reduced n-body problem
The classical n-body problem in d-dimensional space is invariant under the
Galilean symmetry group. We reduce by this symmetry group using the method of
polynomial invariants. As a result we obtain a reduced system with a
Lie-Poisson structure which is isomorphic to sp(2n-2), independently of d. The
reduction preserves the natural form of the Hamiltonian as a sum of kinetic
energy that depends on velocities only and a potential that depends on
positions only. Hence we proceed to construct a Poisson integrator for the
reduced n-body problem using a splitting method.Comment: 26 pages, 2 figure
General Relativity in terms of Dirac Eigenvalues
The eigenvalues of the Dirac operator on a curved spacetime are
diffeomorphism-invariant functions of the geometry. They form an infinite set
of ``observables'' for general relativity. Recent work of Chamseddine and
Connes suggests that they can be taken as variables for an invariant
description of the gravitational field's dynamics. We compute the Poisson
brackets of these eigenvalues and find them in terms of the energy-momentum of
the eigenspinors and the propagator of the linearized Einstein equations. We
show that the eigenspinors' energy-momentum is the Jacobian matrix of the
change of coordinates from metric to eigenvalues. We also consider a minor
modification of the spectral action, which eliminates the disturbing huge
cosmological term and derive its equations of motion. These are satisfied if
the energy momentum of the trans Planckian eigenspinors scale linearly with the
eigenvalue; we argue that this requirement approximates the Einstein equations.Comment: 6 pages, RevTe
A phase 3 multicenter, prospective, open-label efficacy and safety study of immune globulin (human) 10% caprylate/chromatography purified in patients with myasthenia gravis exacerbations
Background: Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission. Exacerbations may involve increasing bulbar weakness and/or sudden respiratory failure, both of which can be critically disabling. Management of MG exacerbations includes plasma exchange and intravenous immunoglobulin (IVIG); they are equally effective, but patients experience fewer side effects with IVIG. The objective of this study was to assess the efficacy and safety of immune globulin caprylate/chromatography purified (IGIV-C) in subjects with MG exacerbations. Methods: This prospective, open-label, non-controlled 28-day clinical trial was conducted in adults with MG Foundation of America class IVb or V status. Subjects received IGIV-C 2 g/kg over 2 consecutive days (1 g/kg/day) and were assessed for efficacy/safety on Days 7, 14, 21, and 28. The primary efficacy endpoint was the change from Baseline in quantitative MG (QMG) score to Day 14. Secondary endpoints of clinical response, Baseline to Day 14, included at least a 3-point decrease in QMG and MG Composite and a 2-point decrease in MG-activities of daily living (MG-ADL). Results: Forty-nine subjects enrolled. The change in QMG score at Day 14 was significant (p < 0.001) in the Evaluable (-6.4, n = 43) and Safety (-6.7, n = 49) populations. Among evaluable subjects, Day 14 response rates were 77, 86, and 88% for QMG, MG Composite, and MG-ADL, respectively. IGIV-C showed good tolerability with no serious adverse events. Conclusions: The results of this study show that IGIV-C was effective, safe, and well tolerated in the treatment of MG exacerbations
Characterization of the Benchmark Binary NLTT 33370
We report the confirmation of the binary nature of the nearby, very low-mass
system NLTT 33370 with adaptive optics imaging and present resolved
near-infrared photometry and integrated light optical and near-infrared
spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show
significant orbital motion between 2013 February and 2013 April. Optical
spectra reveal weak, gravity sensitive alkali lines and strong lithium 6708
Angstrom absorption that indicate the system is younger than field age.
VLT-SINFONI near-IR spectra also show weak, gravity sensitive features and
spectral morphology that is consistent with other young, very low-mass dwarfs.
We combine the constraints from all age diagnostics to estimate a system age of
~30-200 Myr. The 1.2-4.7 micron spectral energy distribution of the components
point toward T_eff=3200 +/- 500 K and T_eff=3100 +/- 500 K for NLTT 33370 A and
B, respectively. The observed spectra, derived temperatures, and estimated age
combine to constrain the component spectral types to the range M6-M8.
Evolutionary models predict masses of 113 +/- 8 M_Jup and 106 +/- 7 M_Jup from
the estimated luminosities of the components. KPNO-Phoenix spectra allow us to
estimate the systemic radial velocity of the binary. The Galactic kinematics of
NLTT 33370AB are broadly consistent with other young stars in the Solar
neighborhood. However, definitive membership in a young, kinematic group cannot
be assigned at this time and further follow-up observations are necessary to
fully constrain the system's kinematics. The proximity, age, and late-spectral
type of this binary make it very novel and an ideal target for rapid, complete
orbit determination. The system is one of only a few model calibration
benchmarks at young ages and very low-masses.Comment: 25 pages, 3 tables, 13 figures, accepted for publication in The
Astrophysical Journa
Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry-Perot resonator
We have tested a new kind of Fabry-Perot long-baseline optical resonator proposed to reduce the thermal noise sensitivity of gravitational wave interferometric detectors--the "mesa beam" cavity--whose flat top beam shape is achieved by means of an aspherical end mirror. We present the fundamental mode intensity pattern for this cavity and its distortion due to surface imperfections and tilt misalignments, and contrast the higher order mode patterns to the Gauss-Laguerre modes of a spherical mirror cavity. We discuss the effects of mirror tilts on cavity alignment and locking and present measurements of the mesa beam tilt sensitivity
The International Deep Planet Survey I. The frequency of wide-orbit massive planets around A-stars
Breakthrough direct detections of planetary companions orbiting A-type stars
confirm the existence of massive planets at relatively large separations, but
dedicated surveys are required to estimate the frequency of similar planetary
systems. To measure the first estimation of the giant exoplanetary systems
frequency at large orbital separation around A-stars, we have conducted a
deep-imaging survey of young (8-400 Myr), nearby (19-84 pc) A- and F-stars to
search for substellar companions in the 10-300 AU range. The sample of 42 stars
combines all A-stars observed in previous AO planet search surveys reported in
the literature with new AO observations from VLT/NaCo and Gemini/NIRI. It
represents an initial subset of the International Deep Planet Survey (IDPS)
sample of stars covering M- to B-stars. The data were obtained with
diffraction-limited observations in H- and Ks-band combined with angular
differential imaging to suppress the speckle noise of the central stars,
resulting in typical 5-sigma detection limits in magnitude difference of 12 mag
at 1", 14 mag at 2" and 16 mag at 5" which is sufficient to detect massive
planets. A detailed statistical analysis of the survey results is performed
using Monte Carlo simulations. Considering the planet detections, we estimate
the fraction of A-stars having at least one massive planet (3-14 MJup) in the
range 5-320 AU to be inside 5.9-18.8% at 68% confidence, assuming a flat
distribution for the mass of the planets. By comparison, the brown dwarf (15-75
MJup) frequency for the sample is 2.0-8.9% at 68% confidence in the range 5-320
AU. Assuming power law distributions for the mass and semimajor axis of the
planet population, the AO data are consistent with a declining number of
massive planets with increasing orbital radius which is distinct from the
rising slope inferred from radial velocity (RV) surveys around evolved A-stars.Comment: 20 pages, 10 figures, 7 tables. Accepted for publication in A&
Deep imaging survey of young, nearby austral stars: VLT/NACO near-infrared Lyot-coronographic observations
Context. High contrast and high angular resolution imaging is the optimal search technique for substellar companions to nearby stars at physical separations larger than typically 10 AU. Two distinct populations of substellar companions, brown dwarfs and planets, can be probed and characterized. As a result, fossile traces of processes of formation and evolution can be revealed by physical and orbital properties, both for individual systems and as an ensemble.
Aims. Since November 2002, we have conducted a large, deep imaging, survey of young, nearby associations of the southern hemisphere. Our goal is detection and characterization of substellar companions with projected separations in the range 10–500 AU. We have observed a sample of 88 stars, primarily G to M dwarfs, younger than 100 Myr, and within 100 pc of Earth.
Methods. The VLT/NACO adaptive optics instrument of the ESO Paranal Observatory was used to explore the faint circumstellar environment between typically 0.1 and 10". Diffraction-limited observations in H and K_s-band combined with Lyot-coronagraphy enabled us to reach primary star-companion brightness ratios as small as 10^(-6). The existence of planetary mass companions could therefore be probed. We used a standardized observing sequence to precisely measure the position and flux of all detected sources relative to their visual primary star. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects.
Results. We report the discovery of 17 new close (0.1–5.0") multiple systems. HIP 108195 AB and C (F1 III-M6), HIP 84642 AB (a~14 AU, K0-M5) and TWA22 AB (a~1.8 AU; M6-M6) are confirmed comoving systems. TWA22 AB is likely to be a rare astrometric calibrator that can be used to test evolutionary model predictions. Among our complete sample, a total of 65 targets were observed with deep coronagraphic imaging. About 240 faint companion candidates were detected around 36 stars. Follow-up observations with VLT or HST for 83% of these stars enabled us to identify a large fraction of background contaminants. Our latest results that pertain to the substellar companions to GSC 08047-00232, AB Pic and 2M1207 (confirmed during this survey and published earlier), are reviewed. Finally, a statistical analysis of our complete set of coronagraphic detection limits enables us to place constraints on the physical and orbital properties of giant planets between typically 20 and 150 AU
- …
