54 research outputs found

    Climate driven life histories: the case of the Mediterranean Storm petrel

    Get PDF
    Seabirds are affected by changes in the marine ecosystem. The influence of climatic factors on marine food webs can be reflected in long-term seabird population changes. We modelled the survival and recruitment of the Mediterranean storm petrel (Hydrobates pelagicus melitensis) using a 21-year mark-recapture dataset involving almost 5000 birds. We demonstrated a strong influence of prebreeding climatic conditions on recruitment age and of rainfall and breeding period conditions on juvenile survival. The results suggest that the juvenile survival rate of the Mediterranean subspecies may not be negatively affected by the predicted features of climate change, i.e., warmer summers and lower rainfall. Based on considerations of winter conditions in different parts of the Mediterranean, we were able to draw inferences about the wintering areas of the species for the first time

    Cathelicidin-like Helminth Defence Molecules (HDMs) Absence of Cytotoxic, Anti-microbial and Anti-protozoan Activities Imply a Specific Adaptation to Immune Modulation

    Get PDF
    Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects. © 2013 Thivierge et al

    Integrated monitoring of mola mola behaviour in space and time

    Get PDF
    Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of finescale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) videorecorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (r(s) = 0.184, p < 0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's finescale behaviour observed over a two weeks in May 2014

    Severity dependent distribution of impairments in PSP and CBS: Interactive visualizations

    Get PDF
    BACKGROUND: Progressive supranuclear palsy (PSP) -Richardson's Syndrome and Corticobasal Syndrome (CBS) are the two classic clinical syndromes associated with underlying four repeat (4R) tau pathology. The PSP Rating Scale is a commonly used assessment in PSP clinical trials; there is an increasing interest in designing combined 4R tauopathy clinical trials involving both CBS and PSP. OBJECTIVES: To determine contributions of each domain of the PSP Rating Scale to overall severity and characterize the probable sequence of clinical progression of PSP as compared to CBS. METHODS: Multicenter clinical trial and natural history study data were analyzed from 545 patients with PSP and 49 with CBS. Proportional odds models were applied to model normalized cross-sectional PSP Rating Scale, estimating the probability that a patient would experience impairment in each domain using the PSP Rating Scale total score as the index of overall disease severity. RESULTS: The earliest symptom domain to demonstrate impairment in PSP patients was most likely to be Ocular Motor, followed jointly by Gait/Midline and Daily Activities, then Limb Motor and Mentation, and finally Bulbar. For CBS, Limb Motor manifested first and ocular showed less probability of impairment throughout the disease spectrum. An online tool to visualize predicted disease progression was developed to predict relative disability on each subscale per overall disease severity. CONCLUSION: The PSP Rating Scale captures disease severity in both PSP and CBS. Modelling how domains change in relation to one other at varying disease severities may facilitate detection of therapeutic effects in future clinical trials

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Audiotactile interactions in temporal perception

    Full text link

    Three-dimensional evolution of large-amplitude internal waves in the Strait of Gibraltar

    Get PDF
    The modeling of large-amplitude internal waves (LAIWs) propagating in the Strait of Gibraltar is carried out using a fully nonlinear nonhydrostatic numerical model. The focus of the modeling efforts was on three-dimensional peculiarities of LAIW evolution, namely, cross-strait variability, interaction with lateral boundaries (including wave breaking and water mixing), radiation of secondary waves from orographic features, and interaction of secondary scattered internal waves. The along-channel propagation of packets of LAIWs reveals remarkable three-dimensional behavior. Due to the Coriolis force and multiple reflections from the lateral boundaries, the largest leading LAIW loses its energy much faster than that in the packet tail, which captures the scattered energy from the leading wave as it propagates and grows in amplitude. As a result of the energy transfer, the initially rank-ordered wave packet loses its regular structure to evolve into a non-rank-ordered wave train. In situ data collected in the eastern part of the Strait of Gibraltar confirm the idea that the non-rank-ordered structure is a common feature of internal wave packets emerging from the strait into the Alboran Sea. © 2009 American Meteorological Society

    Heat shock treatments delay the increase in wound-induced phenylalanine ammonia-lyase activity by altering its expression, not its induction in Romaine lettuce (Lactuca sativa) tissue

    No full text
    Wounding lettuce (Lactuca sativa L., var. Longifolia) leaves induced an eight-fold increase in the activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), and the subsequent accumulation of phenolic compounds and tissue browning at 10degreesC. PAL is a key enzyme in the synthesis of phenolic compounds. A PAL cDNA was previously isolated by reverse-transcription PCR using total RNA from wounded lettuce leaves. RNA gel blots showed that maximum accumulation of both PAL mRNA and PAL enzyme activity occurred 24 h after wounding. A 2-min heat shock at 45degreesC administered within 5 min of wounding delayed the wound-induced increase in PAL activity, but did not delay the increase in wound-induced PAL mRNA. Changes in the content of PAL protein were also followed by immunoblot using anti-PAL antibody raised against the bacterially expressed protein from the cDNA. Immunoblots showed that the level of PAL protein in wounded lettuce tissue was significantly reduced by the heat shock treatment. These data suggest that heat shock reduces the rise in wound-induced PAL enzyme activity by reducing the translation of wound-induced PAL mRNA, or by increasing the turnover of the induced PAL protein

    Physical-biological coupling in the Strait of Gibraltar

    No full text
    This study presents a joint analysis of the distributions of some biogeochemical variables and their relation to the hydrodynamics of Gibraltar Strait. It is a synthesis paper that brings together many results obtained during CANIGO project. We show the role of hydrodynamics as a forcing agent for the plankton community structure in the Strait, with emphasis on the two physical processes that we propose as key factors for the coupling: interface position and oscillations, and mixing processes along the Strait. As a general pattern, autotrophic plankton biomass increases at the Strait from southwest to northeast, a tendency that coincides with a gradual elevation of the interface depth in the same direction. The different mechanisms of mixing that take place in the Strait are briefly reviewed: The occurrence of the internal hydraulic jump is an important mechanism of mixing constrained to the spring tide situations, but other processes such as the generation of arrested internal waves of wavelength around 1 km are proposed as a complementary mixing mechanism, particularly during neap tides situations. Both mechanisms, the elevation of the pycnocline and these mixing events, can enhance biological productivity and biomass accumulation on the northeastern sector of the Strait, since phytoplankton cells are there packaged in a water mass with sufficient light and nutrients and smaller advective velocity. There is a clear north-south difference in the biological response to these upwelling episodes in the eastern section, with high nutrient and low chlorophyll in the south and the opposite in the north. The deeper interface and the greater water speed are the proposed reasons for this lower nutrient uptake on the southeastern sector. Finally, the temporal scales of variation of the mixing events, the influence of its periodicity on the productivity of the area and the influence of these upwelling episodes in the nearest Alboran Sea are discussed. (C) 2002 Elsevier Science Ltd. All rights reserved
    corecore