56 research outputs found
Von Willebrand factor, angiodysplasia and angiogenesis
The large multimeric glycoprotein Von Willebrand factor (VWF) is best known for its role in haemostasis; however in recent years other functions of VWF have been identified, indicating that this protein is involved in multiple vascular processes. We recently described a new role for VWF in controlling angiogenesis, which may have significant clinical implications for patients with Von Willebrand disease (VWD), a genetic or acquired condition caused by the deficiency or dysfunction of VWF. VWD can be associated with angiodysplasia, a condition of degenerative blood vessels often present in the gastrointestinal tract, linked to dysregulated angiogenesis. Angiodysplasia can cause severe intractable bleeding, often refractory to conventional VWD treatments. In this review we summarise the evidence showing that VWF controls angiogenesis, and review the angiogenic pathways which have been implicated in this process. We discuss the possible mechanisms though which VWF regulates angiopoietin-2 (Ang-2) and integrin αvβ3, leading to signalling through vascular endothelial growth factor receptor-2 (VEGFR2), one of the most potent activators of angiogenesis. We also review the evidence that links VWF with angiodysplasia, and how the newly identified function of VWF in controlling angiogenesis may pave the way for the development of novel therapies for the treatment of angiodysplasia in congenital VWD and in acquired conditions such as Heyde syndrome
Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders
von Willebrand factor binds to angiopoietin-2 within endothelial cells and after release from Weibel-Palade bodies
BACKGROUND: The von Willebrand factor (VWF) is a multimeric plasma glycoprotein essential for hemostasis, inflammation, and angiogenesis. The majority of VWF is synthesized by endothelial cells (ECs) and stored in Weibel-Palade bodies (WPB). Among the range of proteins shown to co-localize to WPB is angiopoietin-2 (Angpt-2), a ligand of the receptor tyrosine kinase Tie-2. We have previously shown that VWF itself regulates angiogenesis, raising the hypothesis that some of the angiogenic activity of VWF may be mediated by its interaction with Angpt-2. METHODS: Static-binding assays were used to probe the interaction between Angpt-2 and VWF. Binding in media from cultured human umbilical vein ECs s and in plasma was determined by immunoprecipitation experiments. Immunofluorescence was used to detect the presence of Angpt-2 on VWF strings, and flow assays were used to investigate the effect on VWF function. RESULTS: Static-binding assays revealed that Angpt-2 bound to VWF with high affinity (KD,app ∼3 nM) in a pH and calcium-dependent manner. The interaction was localized to the VWF A1 domain. Co-immunoprecipitation experiments demonstrated that the complex persisted following stimulated secretion from ECs and was present in plasma. Angpt-2 was also visible on VWF strings on stimulated ECs. The VWF-Angpt-2 complex did not inhibit the binding of Angpt-2 to Tie-2 and did not significantly interfere with VWF-platelet capture. CONCLUSIONS: Together, these data demonstrate a direct binding interaction between Angpt-2 and VWF that persists after secretion. VWF may act to localize Angpt-2; further work is required to establish the functional consequences of this interaction
De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.
Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability
Expert United Kingdom consensus on the preservation of joint health in people with moderate and severe haemophilia A: A modified Delphi panel
\ua9 2024 The Authors. Haemophilia published by John Wiley & Sons Ltd.Aim: For people with haemophilia A (PwHA), bleeding in the joints leads to joint damage and haemophilia-related arthropathy, impacting range of motion and life expectancy. Existing guidelines for managing haemophilia A support healthcare professionals (HCPs) and PwHA in their efforts to preserve joint health. However, such guidance should be reviewed, considering emerging evidence and consensus as presented in this manuscript. Methods: Fifteen HCPs experienced in the management of PwHA in the UK participated in a three-round Delphi panel. Consensus was defined at ≥70% of panellists agreeing or disagreeing for Likert-scale questions, and ≥70% selecting the same option for multiple- or single-choice questions. Questions not reaching consensus were revised for the next round. Results: 26.8% (11/41), 44.8% (13/29) and 93.3% (14/15) of statements reached consensus in Rounds 1, 2 and 3, respectively. HCPs agreed that prophylaxis should be offered to patients with a baseline factor VIII (FVIII) level of ≤5 IU/dL and that, where there is no treatment burden, the aim of prophylaxis should be to achieve a trough FVIII level ≥15 IU/dL and maintain a longer period with FVIII levels of ≥20–30 IU/dL to provide better bleed protection. The aspirational goal for PwHA is to prevent all joint bleeds, which may be achieved by maintaining normalised (50–150 IU/dL) FVIII levels. Conclusion: The panel of experts were largely aligned on approaches to preserving joint health in PwHA, and this consensus may help guide HCPs
A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss
Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.The NIHR BioResource- Rare Diseases and the associated BRIDGE genome sequencing projects are supported by the National Institute for Health Research (NIHR; http://www.nihr.ac.uk). B.N. was supported by the Deutsche Forschungsgemeinschaft (SFB 688). S.S. was supported by a grant of the German Excellence Initiative to the Graduate School of Life Sciences, University of Würzburg. ET, DG, JCS, SP, IS, CJP, RM, SAsh, ST and KS are supported by the NIHR BioResource - Rare Diseases. KF, CT, and CVG are supported by the Fund for Scientific Research-Flanders (FWO-Vlaanderen, Belgium, G.0B17.13N) and by the Research Council of the University of Leuven (BOF KU Leuven‚ Belgium, OT/14/098). WNE is supported by the Cancer Council Western Australia. Research in the Ouwehand laboratory is supported by program grants from the European Commission, NIHR to WJA, SM, MK, RP, SBJ and WHO under numbers RP-PG-0310-1002; the laboratory also receives funding from NHS Blood and Transplant; CL and SKW are supported by Medical Research Council (MRC) Clinical Training Fellowships (number MR/K023489/1) and TKB by a British Society of Haematology/NHS Blood and Transplant grant. MAL and CL are supported by the Imperial College London Biomedical Research Centre; JRB acknowledges support by the NIHR Cambridge Biomedical Research Centre and SR by the Medical Research Council and Cambridge Biomedical Research Centre. CVG is holder of the Bayer and Norbert Heimburger (CSL Behring) Chairs. ADM is supported by the NIHR Bristol Cardiovascular Biomedical Research Unit
Parameters for the mathematical modelling of Clostridium difficile acquisition and transmission: a systematic review
INTRODUCTION: Mathematical modelling of Clostridium difficile infection dynamics could contribute to the optimisation of strategies for its prevention and control. The objective of this systematic review was to summarise the available literature specifically identifying the quantitative parameters required for a compartmental mathematical model of Clostridium difficile transmission. METHODS: Six electronic healthcare databases were searched and all screening, data extraction and study quality assessments were undertaken in duplicate. Results were synthesised using a narrative approach. RESULTS: Fifty-four studies met the inclusion criteria. Reproduction numbers for hospital based epidemics were described in two studies with a range from 0.55 to 7. Two studies provided consistent data on incubation periods. For 62% of cases, symptoms occurred in less than 4 weeks (3-28 days) after infection. Evidence on contact patterns was identified in four studies but with limited data reported for populating a mathematical model. Two studies, including one without clinically apparent donor-recipient pairs, provided information on serial intervals for household or ward contacts, showing transmission intervals of <1 week in ward based contacts compared to up to 2 months for household contacts. Eight studies reported recovery rates of between 75%-100% for patients who had been treated with either metronidazole or vancomycin. Forty-nine studies gave recurrence rates of between 3% and 49% but were limited by varying definitions of recurrence. No study was found which specifically reported force of infection or net reproduction numbers. CONCLUSIONS: There is currently scant literature overtly citing estimates of the parameters required to inform the quantitative modelling of Clostridium difficile transmission. Further high quality studies to investigate transmission parameters are required, including through review of published epidemiological studies where these quantitative estimates may not have been explicitly estimated, but that nonetheless contain the relevant data to allow their calculation
The potential interaction between time perception and gaming: a narrative review
Compromised time control is a variable of interest among disordered gamers because time spent on videogames can directly affect individuals’ lives. Although time perception appears to be closely associated with this phenomenon, previous studies have not systematically found a relationship between time perception and gaming. Therefore, the purpose of this narrative review is to explore how gaming disorder may be associated with time perception. It has been found that gamers exhibit a stronger attentional focus as well as an improved working memory compared with non-gamers. However, gamers (and especially disordered gamers) exhibit a stronger reaction to gaming cues which—coupled with an altered emotion regulation observed among disordered gamers—could directly affect their time perception. Finally, “'flow states”' direct most of the attentional resources to the ongoing activity, leading to a lack of resources allocated to the time perception. Therefore, entering a flow state will result in an altered time perception, most likely an underestimation of duration. The paper concludes that the time loss effect observed among disordered gamers can be explained via enhanced emotional reactivity (facilitated by impaired emotion regulation)
De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures
© 2018 Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability
Biallelic Mutation of ARHGEF18, Involved in the Determination of Epithelial Apicobasal Polarity, Causes Adult-Onset Retinal Degeneration
Mutations in more than 250 genes are implicated in inherited retinal dystrophy; the encoded proteins are involved in a broad spectrum of pathways. The presence of unsolved families after highly parallel sequencing strategies suggests that further genes remain to be identified. Whole-exome and -genome sequencing studies employed here in large cohorts of affected individuals revealed biallelic mutations in ARHGEF18 in three such individuals. ARHGEF18 encodes ARHGEF18, a guanine nucleotide exchange factor that activates RHOA, a small GTPase protein that is a key component of tight junctions and adherens junctions. This biological pathway is known to be important for retinal development and function, as mutation of CRB1, encoding another component, causes retinal dystrophy. The retinal structure in individuals with ARHGEF18 mutations resembled that seen in subjects with CRB1 mutations. Five mutations were found on six alleles in the three individuals: c.808A>G (p.Thr270Ala), c.1617+5G>A (p.Asp540Glyfs∗63), c.1996C>T (p.Arg666∗), c.2632G>T (p.Glu878∗), and c.2738_2761del (p.Arg913_Glu920del). Functional tests suggest that each disease genotype might retain some ARHGEF18 activity, such that the phenotype described here is not the consequence of nullizygosity. In particular, the p.Thr270Ala missense variant affects a highly conserved residue in the DBL homology domain, which is required for the interaction and activation of RHOA. Previously, knock-out of Arhgef18 in the medaka fish has been shown to cause larval lethality which is preceded by retinal defects that resemble those seen in zebrafish Crumbs complex knock-outs. The findings described here emphasize the peculiar sensitivity of the retina to perturbations of this pathway, which is highlighted as a target for potential therapeutic strategies
- …
