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KEY POINTS 

A gain-of-function DIAPH1 variant associates with macrothrombocytopenia and 

hearing loss and extends the spectrum of DIAPH1 related disease 

 

Our observations of altered megakaryopoiesis and platelet cytoskeletal 

regulation highlight a critical role for DIAPH1 in platelet formation 

 

ABSTRACT  

Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized 

by enlarged and reduced numbers of circulating platelets, sometimes resulting in 

abnormal bleeding. In most MTP, this phenotype arises because of altered 

regulation of platelet formation from megakaryocytes (MK). We report the 

identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 

1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological 

phenotyping and similarity regression. We describe two unrelated pedigrees with 

MTP and sensorineural hearing loss that segregate with a DIAPH1 p.R1213* variant 

predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The 

R1213* variant was associated with reduced proplatelet formation from cultured 

MKs, cell clustering and abnormal cortical filamentous actin. Similarly, in platelets 

there was increased filamentous actin and stable microtubules, indicating 

constitutive activation of DIAPH1. Over-expression of DIAPH1 R1213* in cells 

reproduced the cytoskeletal alterations found in platelets. Our description of a novel 

disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-

related disease and provides new insights into the autoregulation of DIAPH1 activity. 
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INTRODUCTION 

Platelet formation by megakaryocytes (MKs) requires an ordered sequence of 

differentiation steps from haematopoietic stem cells followed by MK maturation, during 

which repeated rounds of DNA replication without cell division usually result in very 

large MKs with a single nucleus and DNA contents up to 128N. This process enables 

the accumulation of platelet-specific granules and an invaginated membrane system 

that will later contribute to the platelet cytoplasmic contents and surface membrane.1,2 

Platelets are generated from mature MKs by the protrusion of cytoplasmic extensions 

termed proplatelets into bone marrow sinusoids, where final platelet sizing and 

shaping occurs.3 Platelet formation strongly depends on microtubules, which enable 

proplatelet elongation and transport of organelles from the MK cytoplasm,1 and actin-

dependent processes, which mediate the branching of elongating proplatelets, thereby 

determining the number of available proplatelet tips to form platelets.4 

 

Altered regulation of platelet formation is a feature of several human hematopoietic 

disorders, including macrothrombocytopenia (MTP) in which there are enlarged and 

reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding.5,6 

MTP has been associated with pathogenic variants in genes that regulate MK 

maturation (GATA1, GFI1B and NBEAL2) or which encode platelet surface proteins 

(GP1BA, GP1BB, GP9, ITGA2B and ITGB3; reviewed in 5). However, a prevalent sub-

group of MTP arise from variants in ACTN1,7 FLNA,8 MYH9,9,10 TUBB1,11 and 

PRKACG12 which encode MK cytoskeletal proteins or interactors. It has been 

proposed that the platelet phenotype associated with some MYH9,13,14 ACTN1,7 and 

TUBB115 variants results from aberrant cytoskeletal rearrangements during proplatelet 

formation, leading to altered platelet production. Cytoskeletal dysfunction may also 
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underlie associated phenotypes such as hearing loss, cataract and glomerulopathy 

with some MYH9 variants10,16 and periventricular nodular heterotopia and 

otopalatodigital syndromes with some FLNA variants.8  

 

Here we extend the repertoire of MTP by reporting the discovery of a new dominant 

syndromic disorder of platelet formation. We show that MTP was associated with 

sensorineural hearing loss in two unrelated pedigrees and that this phenotype 

segregates with the same chain-truncating variant in DIAPH1, which encodes the 

cytoskeletal regulator and Rho-effector, diaphanous-related formin 1 (DIAPH1, 

mDia1), identified previously as a regulator of megakaryocytopoiesis in vitro. 17 

 

METHODS 

Recruitment of cases and genetic analysis. 

The cases were enrolled to the BRIDGE-BPD study (UK REC10/H0304/66) or French 

‘Network on the inherited diseases of platelet function and platelet 

production’ (INSERM RBM 04-14) after providing informed written consent. Control 

groups comprised other cases with bleeding or platelet disorders (BPD) of unknown 

genetic basis or with unrelated rare disorders enrolled to the NIHR BioResource-Rare 

Diseases study (UK REC 13/EE/0325). Data collection, human phenotype ontology 

(HPO) coding and high throughput sequencing were performed as previously 

reported.18 Splice site, frameshift, stop-gain/loss or start-loss variants were analyzed 

further if they were less frequent than 1 in 10,000 in the Exome Aggregation 

Consortium (ExAC) database and 1 in 100 in our in-house database. Candidate genes 

for BPD were identified by phenotype similarity regression19 to allow for the high 

degree of phenotypic and genetic heterogeneity amongst the BPD cases. 
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Platelet imaging 

Fixed peripheral blood smears were stained with May-Grünwald-Giemsa stain 

(MGG). Transmission electron microscopy was performed on platelets fixed with 

2.5% glutaraldehyde. Platelet characteristics were measured in a minimum of 99 

sections for each case using ImageJ as described previously.8 Data are presented 

as mean ± SD. Statistical significance was determined by Student’s t test for 

continuous variables, and by the χ² test for categorical variables. P<0.01 was 

considered as statistically significant. 

 

Megakaryocyte colony culture and analysis 

CD34+ hematopoietic stem cells (HSCs) were isolated from peripheral blood by 

magnetic cell sorting and differentiated into MKs as described previously in plate and 

liquid cultures.20,21 MK-colony forming units (MK-CFU) and MKs were visualized by 

light or confocal microscopy after staining with MGG, phalloidin or anti-CD61 

antibodies. Proplatelet formation (PPF) in liquid MK cultures was determined by light 

microscopy and ploidy by flow cytometry as described previously.21 

 

DIAPH1 expression in cell lines 

The DIAPH1-R1213* cDNA was generated by site directed mutagenesis of the full-

length wild-type DIAPH1 cDNA and cloned into the pCMV6-Fc-S (Origene, Rockville, 

MD) mammalian expression vector, before transient transfection into human 

embryonic kidney (HEK293FT) or adenocarcinomic human alveolar basal epithelial 

(A549) cells, cultured using standard conditions. 

 

Western blotting and immunofluorescence microscopy  
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Denatured washed platelet or transfected HEK293FT cell lysates were separated by 

SDS-PAGE and blotted onto PVDF membranes. The membranes were probed with 

primary antibodies recognizing DIAPH1, DIAPH3, DIAPH2, GAPDH, β-, tyrosinated 

(Tyr-), detyrosinated (Glu-) and acetylated tubulin (ac-tubulin).  

 

For confocal microscopy, transfected A549 cells or platelets applied to fibrinogen-

coated coverslips were fixed and probed with antibodies recognizing tubulin or 

DIAPH1 as described above. Filamentous actin was stained using phalloidin-

Atto647N. Where indicated, platelets were pre-incubated with 10 µM colchicine. 

Platelets and cells were visualized by confocal microscopy as reported previously.22 

 

Microtubule sedimentation and cold-induced disassembly 

Polymerized and soluble microtubule fractions were prepared from lysates of resting 

or colchicine-treated (10 µM) platelets and from resting or SMIFH2-treated (25 µM) 

transfected HEK293FT cells by centrifugation for 30 min at 100,000 g and 37°C. 

Microtubule fractions were visualized by Western blot. Microtubules were 

depolymerized by incubation of platelets at 4°C or with colchicine (10 µM). 

Reassembly was allowed by subsequent rewarming at 37°C as previously reported. 

22-24 

 

Detailed methods and uncropped images of Western blots are provided in 

Supplementary material. 

 

RESULTS 

Selection of DIAPH1 as a candidate gene for MTP  
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We identified DIAPH1 as a novel candidate gene for MTP by analyzing data from 702 

index cases with bleeding or platelet disorders of unknown genetic basis recruited to 

BRIDGE-BPD study of the NIHR Bioresource-Rare Diseases. Control data were 

analyzed from 3,453 cases with unrelated rare disorders or unaffected pedigree 

members recruited to other branches of the NIHR Bioresource-Rare Diseases.  

 

There were 1,073 genes for which at least two BPD cases carried a rare variant 

predicted to have a high impact on gene translation. After phenotype similarity 

regression analysis of the genes in this group, DIAPH1 had the highest probability for 

the model specifying a statistical association between phenotype and genotype for 

which thrombocytopenia was inferred (mean (γ)=0.81; Fig. 1A) The inferred 

characteristic phenotype for DIAPH1 primarily comprised the HPO terms 

“Sensorineural hearing impairment” and “Abnormality of blood and blood-forming 

tissues”, with the latter driven by the terms “Thrombocytopenia” and “Abnormal 

bleeding” (Fig. 1B).  

 

Two index cases from different pedigrees in the BRIDGE-BPD collection (Bordeaux 

case 17 and Bristol case 21; Fig. 1C) harbored the same high-impact variant in 

DIAPH1. This was a heterozygous c.3637C>T transition, annotated relative to the 

DIAPH1 isoform ENST00000398557, which encodes the CCDS-annotated DIAPH1 

protein (UNIPROT O60610). This predicted substitution of the conserved (PhyloP 

p=5.25 × 10-4) arginine at amino acid position 1213 with a premature stop codon 

(R1213*; Fig. 2). This variant was not observed in any of the 61,486 exomes in the 

ExAC database nor in the remaining 4,151 exomes sequenced in-house. Sanger 

sequencing showed that the R1213* variant was present in six further pedigree 
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members with both MTP and sensorineural hearing loss but was absent in three 

asymptomatic pedigree members, indicating segregation with the DIAPH1 genotype 

(p=3.66 × 10-4, conditional on the genotypes of the index cases; Fig. 1C). We found 

no other rare variants shared by the index cases within 10 Mb around DIAPH1. The 

sequencing data provided no evidence that these cases were closely related at 

genome-wide level or more locally within the DIAPH1-containing chromosome 5 

(Supplementary Fig. 1). 

 

The R1213* variant predicts DIAPH1 protein truncation 

DIAPH1 is a homodimeric formin family protein that promotes actin assembly and 

regulates microtubule stability through a formin homology (FH) 1 domain which 

contains binding sites for profilin, and an FH2 domain which promotes nucleation 

and elongation of actin filaments and possibly microtubule interactions.25-27 DIAPH1 

is regulated by a diaphanous auto-regulatory domain (DAD) near the carboxyl 

terminus, which inhibits DIAPH1 activity through an interaction with the diaphanous 

inhibitory domain (DID) near the amino terminus (Fig. 2). Auto-inhibition is normally 

released by competitive binding of activated Rho GTPases, enabling cytoskeletal 

remodeling. 28,29 The inhibitory DAD-DID interaction is mediated by ‘core’ MDxLLExL 

and ‘basic’ RRKR motifs in the DAD (Fig. 2) that bind cognate DID sequences.30  

 

Reverse-transcriptase (RT) PCR and amplification of the R1213 region with 

subsequent restriction endonuclease digestion proved the presence of both wild-type 

and R1213* DIAPH1 mRNA transcripts in platelets from cases 10 and 16 

(Supplementary Fig. 2). The premature stop codon created by the R1213* variant 

occurs at position 1 of the RRKR motif (residues 1213-1216), but is closer to the 
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DIAPH1 carboxyl terminus than the MDxLLExL motif (residues 1199-1206). 

Therefore, the predicted consequence of the R1213* variant is expression of 

DIAPH1 protein with a truncation within the DAD resulting in loss of the RRKR motif, 

but not the MDxLLExL motif (Fig. 2). 

 

DIAPH1 R1213* is associated with syndromic MTP and hearing loss and 

frequently with mild neutropenia 

All eight genotyped R1213* cases had thrombocytopenia (baseline automated platelet 

counts 63-147 x109 L-1) and enlarged platelets (mean platelet volume (MPV) 11.2-

14.1 fL), confirmed by light microscopy (Fig 3A. and Table 1) and by morphometric 

analysis of platelet electron micrographs (Table 2). The platelet count ranges in the 

male and female cases corresponded to the 0.15-2.81th percentiles and 0.08-0.38th 

percentiles respectively of a sex-stratified population of 443,142 UK BioBank 

volunteers. For MPV, the corresponding percentiles were 99.81-99.83 and 94.14-

99.92 (Supplementary Fig. 3). Asymptomatic mild neutropenia was observed on at 

least one occasion in six cases (range of neutrophil counts 0.62-4.34 x109 L-1), but 

varied within the cases at different times (Table 1). Four cases displayed iron 

deficiency anemia, which corrected completely with dietary iron supplementation. The 

other cases had no red cell abnormalities suggesting that the erythroid lineage was 

unaltered by the R1213* variant. Platelets from three tested cases showed normal 

aggregation with ADP (2.5-10 µM), collagen (2 µg mL-1), arachidonic acid (0.5 mg mL-

1), TRAP-14mer (50 µM) and ristocetin (0.5-1-5 mg mL-1). ADP and TRAP-stimulated 

dense granule secretion (cases 10, 16, 17 and 21) and α-granule secretion (cases 10 

and 16) were unchanged compared to controls. Platelet surface expression of αIIbβ3 

integrin and glycoprotein Ib-IX-V (cases 10, 16 and 17) was slightly increased 
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compared with controls, consistent with the increased platelet size. Electron 

microscopy (cases 10, 16, 17 and 21) showed that the enlarged platelets were 

typically round, although occasionally highly elongated. There were also abnormal 

vacuoles, membrane complexes and abnormally distributed α-granules, some of 

which were unusually large (Fig. 3B). Using electron microscopy, we have quantified 

the surface, maximal and minimal diameters of platelets on sections, which confirmed 

the increased platelet size (Table 2). Only for case 10 the concentration of granules 

was significantly increased (Table 2). Electron micrographs of neutrophils from the 

R1213* cases showed a heterogeneous content of granules but no abnormal 

cytoplasmic inclusions as observed in some cases with MYH9-related disease 

(Supplementary Fig. 4). 

 

Abnormal bleeding symptoms comprised menorrhagia and mild subcutaneous 

bleeding in case 17 and a post-partum bleed in case 21, but were absent in the other 

cases. The sensorineural hearing loss that segregated with MTP was detected either 

at birth or in the first decade of life but progressed rapidly to a severe defect requiring 

bilateral hearing aids in all eight cases. None of the R1213* cases had abnormal renal 

function or early onset cataract. 

 

Abnormal maturation of DIAPH1 R1213* MKs  

Assessment of MK proliferation, differentiation and proplatelet formation of CD34+ 

stem cell-derived MKs from case 21 and controls on two separate occasions, 

revealed similar numbers of MK colony forming units (CFU-MK) at day 12 of culture 

(Fig. 4A). However, the MK colonies from case 21 had a higher cell density 

compared to controls (Fig. 4B and Supplementary Fig. 5). Suspension cultures 



13 
 

from case 21 showed a pronounced defect in PPF compared to different controls in 

two independent experiments (Fig. 4C, D). In addition, we found numerous MK 

clusters containing small and large MKs (Fig. 4D and Supplementary Fig. 6) in 

cultures from case 21, that were not present in control cultures, which hampered 

analysis of MK ploidy by flow cytometry (Supplementary Fig. 7). 

 

Confocal microscopy of control MKs on day 12 of culture showed a partial co-

localization of CD61 and filamentous actin (F-actin), which was not observed in MKs 

from case 21 (Fig. 4E). There was also aberrant architecture of the cortical F-actin 

cytoskeleton in MKs from case 21 and small filopodia-like protrusions and F-actin 

positive junctions at the contact zones of clustered MKs (Fig. 4E). This is in line with 

previous studies where DIAPH1 was shown to regulate adherens junctions via the 

actin network.31,32 

 

The R1213* variant is associated with altered DIAPH expression in platelets. 

We next investigated the effect of the R1213* variant on DIAPH1 expression in 

platelets by performing Western blots using an antibody recognizing the DIAPH1 

amino-terminus. Whereas in EDTA-anticoagulated platelet lysates from cases 10, 

16, 17 and 21 normal expression levels of DIAPH1 were found, in acid-citrate-

dextrose-anticoagulated platelet lysates the 155 kDa band, corresponding to full 

length DIAPH1 protein, was decreased in intensity compared with controls, while a 

band of approximately 80 kDa was more intense (Fig. 5A; Supplementary Fig. 8 

and 9). The 80 kDa band did not correspond to any DIAPH1 transcripts listed in 

Ensembl, but following immunoprecipitation and mass-spectrometry, was found to 

contain peptide sequences with 57% coverage across the full length of the DIAPH1 
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protein sequence (Supplementary information). Moreover, this band was also 

immunoreactive with antibodies recognizing the DIAPH1 carboxyl terminus 

(Supplementary Fig. 8A, B), suggesting that it resulted from limited proteolysis of 

DIAPH1 in platelets as reported previously.33 Since DIAPH1 expressed from the 

R1213* variant allele is predicted to have only a 60 amino acid truncation, it was not 

possible to resolve the relative contribution of the variant DIAPH1 to either of the 

immunoreactive bands (Supplementary Fig. 8B).  

 

Western blots generated from platelets from the R1213* cases also showed 

increased DIAPH2 and DIAPH3 expression compared with controls (Fig. 5A). 

Expression of DIAPH2 and DIAPH3 has previously been observed to decrease 

during MK maturation,17 which we confirmed by RNA-seq analysis (Supplementary 

Fig. 10). Therefore, our observations in the R1213* cases are consistent with 

platelet formation from MKs with deregulated maturation and support the previous 

observations in MKs from bone marrow and culture (Fig. 4A, B).17 

 

DIAPH1 R1213* and altered platelet cytoskeleton.  

Using confocal microscopy, we found that DIAPH1 was localized to the peripheral 

marginal band in resting platelets from controls, but was distributed throughout the 

cytoplasm of platelets from the R1213* cases 10 and 16 (Fig. 5B, C). There was 

also increased F-actin and α-tubulin staining, and aberrant organization of 

microtubules compared with controls (Fig. 5B, D, E). Electron microscopy confirmed 

microtubule disorganization (Fig. 5F) and quantification by manual counting 

revealed approximately 2.6 fold more microtubule coils in platelets from the R1213* 

cases compared to controls (Fig. 5G). Incubation of platelets from controls at 4°C 
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caused disassembly of microtubules, which then reassembled to the marginal band 

after rewarming to 37°C, as previously reported.22-24 In contrast, cold incubation or 

rewarming did not grossly affect the microtubules in platelets from the R1213* cases 

(Fig. 6A, B), suggesting that the increased microtubule content resulted from 

increased microtubule stability. 

 

The formation of stable microtubules is associated with post-translational 

detyrosination (Glu-tub) and acetylation (ac-tub) of α-tubulin, whereas dynamic 

microtubules are characterized by unmodified tyrosinated α-tubulin (Tyr-tub).34,35 

Following treatment with colchicine or cold incubation to destabilize microtubules, 

platelets from the R1213* cases 10 and 16 showed a higher content of stable 

detyrosinated and acetylated microtubules, compared with controls (Fig. 6A-C; 

Supplementary Fig. 11). During spreading on fibrinogen, platelets from the R1213* 

cases maintained detyrosinated and acetylated microtubules, whereas these 

modifications were not rarely detected in controls (Fig. 6D, E). Platelets from the 

R1213* cases also displayed an increased content and aberrant organization of F-

actin, particularly at the platelet cortex where there was increased formation of small 

filopods (Fig. 6D, E). Fractionation of the tubulin cytoskeleton by ultracentrifugation 

revealed higher ac-tub/Tyr-tub and Glu-tub/Tyr-tub band density ratios in the 

R1213* cases compared with controls, particularly in the polymerized (pellet) 

microtubule fraction, confirming a higher content of stable microtubules (Fig. 6F-H).  

 

DIAPH1 R1213* alters cytoskeletal organization in cell lines.  

In HEK293FT cells transfected with wild type (DIAPH1 WT) or variant (DIAPH1 

R1213*) expression constructs, Western blots confirmed overexpression of both 
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DIAPH1 WT and DIAPH1 R1213* proteins. However, in contrast to platelets from 

the R1213* cases, expression of DIAPH2 or DIAPH3 was not increased, allowing us 

to study the effect of the truncated R1213* DIAPH1 variant in isolation (Fig. 7A). 

Transfection of the human adenocarcinoma lung (A549) epithelial cell line with both 

expression constructs increased the prevalence of F-actin, microtubules and 

acetylated microtubules compared with adjacent untransfected cells. This effect was 

more pronounced in DIAPH1 R1213* than in DIAPH1 WT cells (Fig. 7B-D and 

Supplementary Fig. 12). 

 

Western blot analysis of microtubule fractions showed that DIAPH1 R1213* 

transfected HEK293FT cells had a higher content of acetylated and detyrosinated 

microtubules in the polymerized tubulin fraction, compared with DIAPH1 WT or 

mock-transfected controls (Supplementary Fig. 12), thereby reproducing the 

cytoskeletal alterations found in platelets from the cases. Incubation of the cells with 

the small molecule FH2-domain inhibitor SMIFH2 did not influence expression of 

DIAPH1, 2 or 3 (Fig. 7A) and did not prevent stabilization of microtubules by 

DIAPH1 R1213* (Fig. 7E, F). However, SMIFH2 did reduce the increase in F-actin 

content in cells overexpressing DIAPH1 R1213* (Fig. 7E, F) confirming that the 

DIAPH1 FH2 domain is critical for the F-actin polymerization.  

 

DISCUSSION 

We have identified DIAPH1 as a novel candidate gene for dominant MTP and 

sensorineural hearing loss by analysis of the largest ever-assembled collection of 

cases with previously uncharacterized BPD. Essential to this discovery was the 

annotation of the characteristics of the cases with HPO terms for hematological 
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features and phenotypes in other organ systems, and then statistical analysis to 

identify similarities in HPO terms between cases. We have previously shown that 

cluster analysis of HPO terms within a large BPD case collection enabled identification 

of causal variants in ACTN1 and MYH9 that have been associated with MTP.7,9 

However, the statistical evidence supporting DIAPH1 as a candidate gene could only 

be obtained by applying a novel similarity regression method to the phenotype and 

genotype data.19 Specifically, similarity regression revealed a hitherto unidentified 

association between a characteristic phenotype that was ontologically similar for two 

unrelated index cases and the shared presence of a high impact variant in DIAPH1. 

We also showed that the high impact variant in DIAPH1 was the same premature stop 

variant R1213* in both index cases and that this segregated with MTP and 

sensorineural hearing loss in a further six pedigree members, thereby confirming 

linkage with R1213*. 

 

It is noteworthy that DIAPH1 has been identified previously as the candidate gene for 

non-syndromic sensorineural deafness type Deafness Autosomal Dominant 1 

(DFNA1) (ORPHA90635) in a single characterized pedigree, in which hearing loss 

typically developed later in childhood than in the R1213* cases.36,37 The causal variant 

for DFNA1 caused aberrant splicing of DIAPH1 in lymphocyte cDNA that predicted 

expression of DIAPH1 with an abnormal carboxyl terminus sequence from glutamine 

1220, and chain truncation after a further 21 amino acids.36 No platelet count or 

volume data are reported for the DFNA1 pedigree preventing a direct comparison with 

the R1213* pedigrees reported here. However, an important difference is that the 

DFNA1 variant disrupts only the two final residues in the DIAPH1 DAD domain (1194-

1222 in UNIPROT O60610). In contrast to R1213*, this does not result in loss of the 
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autoregulatory basic RRKR motif. Absent expression of DIAPH1 resulting from a 

homozygous stop-gain variant at codon 778 has been associated previously with short 

stature, microcephaly and visual impairment without reported hearing or hematological 

phenotypes.38 These observations suggest that genetic abnormalities of DIAPH1 may 

be associated with a range of phenotypes which together constitute a novel group of 

DIAPH1-related diseases. 

 

MTP and hearing loss may also co-segregate in MYH9-related disorder (MYH9-RD; 

ORPHA182050) in which abnormal expression of non-muscle myosin heavy chain IIa 

alters myosin-dependent organelle distribution and F-actin organization, thereby 

disrupting MK proplatelet formation.13,14 Aberrant cytoskeletal organization in inner ear 

stereocilia has been proposed as a mechanism for hearing loss in MYH9-RD,16 and 

may contribute to this phenotype in the DIAPH1 R1213* cases. However, there are 

also several characteristics of the DIAPH1 R1213* cases that are absent in MYH9-

RD. For example, platelets in the R1213* cases were elongated or round, moderately 

enlarged and contained few membrane complexes, whereas in MYH9-RD, platelets 

are highly enlarged and contain abundant membrane complexes. Hearing loss was 

early onset and severe in the R1213* cases but develops in only 35% of MYH9-RD 

cases, typically after 10 years of age.10 Cataract and nephropathy are reported in 5% 

and 21% of MYH9-RD cases respectively,10 but were absent in the R1213* cases. 

Interestingly, mild neutropenia was frequently observed for R1213* cases (Table 1). 

These observations indicate that DIAPH1 R1213* is distinct from MHY9-related 

disorder and should be regarded as distinct disorder.  

DIAPH1 is a conserved member of the formin protein family, which mediate Rho-

GTPase dependent assembly of F-actin and microtubule regulation during 
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cytoskeletal remodeling in cytokinesis, organelle trafficking and filopodia formation. 

Several mammalian formins mediate cell differentiation and adhesive events 

required for hematopoiesis.25,39 However, a critical negative regulatory role for 

DIAPH1 is indicated by observations that targeted knockout of the murine DIAPH1 

ortholog Drf1 resulted in hyperproliferative myelodysplasia.40,41 Consistent with this, 

DIAPH1 knockdown in cultured human MKs, resulted in increased proplatelet 

formation.17 In contrast, overexpression of a constitutively active DIAPH1 in which 

both the DID and DAD were deleted by artificial mutagenesis (mDiaΔN3), reduced 

proplatelet formation in cultured human MKs. 17 We also observed reduced 

proplatelet formation in CD34+ cell-derived MKs from R1213* case 21, suggesting 

that this variant may also result in constitutive activation of DIAPH1. The MK culture 

experiments also suggested that the R1213* variant was associated with enhanced 

MK proliferation as an increased number of cells was present in the separate CFU-

MK colonies from case 21. As a consequence of the increased cell density in the 

CFU-MK colonies, we were unable to confirm this by counting the total number of 

single MKs. However, ploidy analysis of suspension cultures revealed no obvious 

differences in MK endomitosis as both large and small MKs were present in cultures 

from case 21. Further studies are required to evaluate the possibility of a 

hyperproliferative effect of early MKs due to the R1213* variant.  

 

The hypothesis that the R1213* variant results in constitutively active DIAPH1 is also 

supported by the prediction that R1213* causes a partial truncation of the 

autoregulatory DIAPH1 DAD. Mutagenesis of the DAD has been shown previously to 

increase the formation of stable microtubule networks and F-actin bundles in cell 

models,42,43 consistent with loss of the inhibitory DID-interaction. This interaction is 
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mediated in part by a DAD core MDxLLExL motif, which is unaffected by the R1213* 

variant but also by the DAD basic RRKR motif that is absent in the R1213* variant.30 

This second site of DID-DAD interaction is necessary for complete auto-regulation of 

DIAPH1 since selective mutagenesis of the basic RRKR motif also conferred 

constitutive activity to DIAPH1 orthologs, resulting in abnormal F-actin polymerization 

and altered cell architecture.43,44  

 

We provided experimental support for constitutive activation of DIAPH1 by showing 

disorganization of actin filaments and increased stability and content of microtubules 

in platelets from the R1213* cases. Overexpression of DIAPH1 R1213* also resulted 

in increased assembly of actin filaments and stabilization of microtubules in cell lines, 

thereby reproducing the cytoskeletal alterations observed in platelets from the R1213* 

cases. These effects on cytoskeletal organization may account directly for the reduced 

proplatelet formation from MKs derived from the cases, since highly regulated 

microtubule and F-actin dynamics are necessary for proplatelet extension and 

branching.4,45,46 It is noteworthy that overexpression of the constitutively active 

DIAPH1 mDiaΔN3 which reduced proplatelet formation in cultured human MKs, was 

shown previously to increase polymerization of filamentous actin, similar to that 

observed with the R1213* variant. However, in MKs overexpressing mDiaΔN3, 

microtubule stability was reduced showing that the cytoskeletal alterations do not 

completely reproduce those associated with the R1213* variant.17 One possible 

explanation for this difference is that in contrast to R1213*, the mDiaΔN3 model 

additionally carries an N-terminal deletion including the Rho GTPase-binding domain 

of DIAPH1, potentially causing a different effect of DIAPH1 regulation.17,43  
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The gain-of-function R1213* DIAPH1 variant represents a new human dominant 

syndromic disorder of MTP and sensorineural hearing loss that has different 

characteristics than DIAPH1 gene deletion models. The platelet phenotype of the 

R1213* variant cases highlights the impact of abnormal regulation of DIAPH1 on 

cytoskeletal organization during platelet production. 
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FIGURE LEGENDS 

Figure 1. DIAPH1 is a candidate gene for macrothrombocytopenia and hearing 

loss. (A) Each BPD index case was coded using Human Phenotype Ontology (HPO) 

terms relating to hematological features and to phenotypes in other organ systems 

and underwent high throughput sequencing.18 Candidate genes for BPD were 

identified by similarity regression in which ‘baseline’ and ‘alternate’ statistical models 

are compared for every gene.19 Under the baseline model, all cases are assumed to 

have the same log odds of carrying a rare variant. Under the alternate model, which 

we give a prior probability of 0.05 of being the true model, the log odds is modeled as 

a linear function of the phenotypic similarity of each case to an HPO-encoded 

“characteristic phenotype”. The characteristic phenotype (φ) and a binary variable 

indicating the true model (γ) are inferred from the genotype and phenotype data. A 

high posterior mean for γ is indicative of a potential association between the presence 

of a rare variant in a gene and a disorder characterized by φ. The histogram indicates 

the mean posterior probability of the alternate model being true for all 1,073 genes in 

which at least two BPD cases carry a high-impact variant. The value for DIAPH1 is 

indicated in red. (B) The inferred HPO-coded characteristic phenotype (φ) for DIAPH1 

is represented as a graph. Each edge denotes an is-a relationship and each node 

contains an abbreviated HPO term with its marginal posterior probability of inclusion in 

φ, which is also represented by the node size. If a node and all its descendants in the 

HPO graph have a marginal posterior probability of inclusion in φ less than 0.02, it is 

not shown (BBFT: Abnormality of blood and blood forming tissues; TCP: 

Thrombocytopenia; FAIE: Functional abnormality of the inner ear; SNHI: 

Sensorineural hearing impairment. Some terms have been shortened for 

conciseness). (C) Pedigrees of the index cases (*) in which the colored symbols 
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indicate macrothrombocytopenia (black) and hearing loss (red). The grey symbols 

indicate that the clinical phenotype is unknown and the white symbols indicate no 

macrothrombocytopenia or hearing loss. Genotyped cases are indicated by +/M for 

the heterozygous DIAPH1 R1213* variant and +/+ for the reference sequence at that 

locus.  

 

Figure 2. Location of the DIAPH1 R1213* variant. Schematic representation of the 

major MK DIAPH1 transcript ENST00000398557 which is predicted to encode the 

1272 amino acid DIAPH1 protein. R1213 is 60 amino acids from the carboxyl 

terminus of DIAPH1 within the diaphanous autoregulatory domain (DAD). In the 

amino acid sequence line up of human DIAPH1 and orthologues, there is 

conservation of the core MDxLLExL (blue box) and basic RRKR (green box) motifs 

within the DAD that mediate auto-inhibitory interactions with the diaphanous 

inhibitory domain (DID) near the amino terminus of DIAPH1. Since R1213 is at 

position 1 of the basic RRKR motif, R1213* is predicted to cause expression of a 

truncated DIAPH1 protein with an intact core MDxLLExL motif, but without the basic 

RRKR motif. 

 

Figure 3. Effect of R1213* variant on platelet morphology. Illustration of the 

typical platelet morphology for cases 10, 16, 17, 21 on a May-Grünwald-Giemsa 

(MGG) stained blood smear for case 21 (A) and by TEM (B). Platelets of control (C) 

are discoid, of regular size with homogeneously distributed granules. All examined 

platelets of the patients show a heterogeneous size, shape, and distribution of 

α-granules. (A) Arrows highlight platelets (case 21) of different size colored by MGG. 

(B) TEM revealed an abnormal large granule (LG). In the middle panel a very thin 
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elongated platelet can be seen, other platelets with a more round shape have few 

granules. In the lower panel a very round platelet with many granules is illustrated 

(case 17) the other platelets from case 16 show an abnormal presence of vacuoles 

(V) and a membrane complex (MC) case 17. Scale bars, 1 µm. The TEM images 

were acquired using either an EM900 (Carl Zeiss) or a JEM-1010 (JEOL) 

transmission electron microscope. 

 

Figure 4. Repeated megakaryocyte proliferation, differentiation and 

proplatelet-formation studies for a R1213* variant case. (A) Total amount of 

CFU-MK colonies derived from a total of 5000 peripheral blood CD34+ mononuclear 

cells per plate from a control (C) and case 21 (21) at day 12 of culture. This 

experiment was repeated at two independent occasions (Exp 1 and Exp 2). (B) 

Representative images of cultured CFU-MK colonies from a control (C) and case 21 

(21) at day 12 of culture visualized by light microscopy after staining with May-

Grünwald-Giemsa (Exp 2). Scale bars, 50 μm. (C) MK in suspension triplicated liquid 

cultures performed at two independent occasions were classified as proplatelet 

forming (PPF-MK) if proplatelet extensions were visible by light microscopy. The 

proportion of PPF-MK was lower in the cultures from case 21 compared to controls 

(One way Anova, ***P>0.001). (D) Representative light microscopy images of 

cultured MKs showing formation of proplatelet extensions for the control. PPF MKs 

are almost absent for the case 21 while they typically present in MK clusters that 

contain large and small cells. Scale bars, 20 µm. (E) Immunofluorescence confocal 

microcopy images of differentiated fibrinogen-adhered MKs at day 12 of culture 

visualized by anti-integrin 3 (green, CD61) and phalloidin (red, F-actin) staining, 

showing co-localization in MKs from control but not from case 21. Scale bars 20 μm. 
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Numerous PPF MKs are present in the control (representative image) while MKs for 

case 21 form clusters.  

 

Figure 5. Altered expression of DIAPH1-3 and cytoskeletal organization in 

platelets from R1213* variant cases. (A) Representative Western blots of resolved 

platelet protein extracts from R1213* cases (10, 16 and 17) and from control (C), 

probed with antibodies recognizing DIAPH1, DIAPH2, DIAPH3 and GAPDH. 

Compared with the control, the R1213* cases, show normal expression of DIAPH1. 

The content of DIAPH2 and DIAPH3 is increased in the cases compared to control. 

Similar quantities of total protein in the Western blot lanes are indicated by the 

control blot probed with an antibody recognizing GAPDH. (B) Representative 

confocal microscopy images of poly-L-lysine-immobilized, resting platelets from the 

cases 10 and 16 and from a control (C), stained for DIAPH1 (cyan), F-actin (red) and 

α-tubulin (green). Platelets were visualized using a Leica TCS SP5 confocal 

microscope (Leica Microsystems). Scale bars, 3 μm. (C) Image analysis (ratio of the 

mean of the first and last maxima and the mean between the first and last minima) 

revealed an aberrant distribution of DIAPH1 in platelets from case 10 and 16 as 

compared with controls. Box plots display first and third quartiles and whiskers mark 

minimum and maximum values unless exceeding 1.5x IQR of at least 50 platelets 

per group; symbols represent outliers and the horizontal line displays median. 

Wilcoxon-Mann-Whitney-test, ***P<0.001. (D, E) Quantification of the 

immunostained α-tubulin surface (D) and fluorescence intensity (FI) per surface unit 

of the F-actin staining (E) revealed an increased content and an abnormal 

distribution in platelets from the cases. Values represent means ± s.d. (n=3 controls 

versus case 10 and 16; 100 platelets). Wilcoxon-Mann-Whitney-test, ***P<0.001. (F) 
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Representative transmission electron micrographs showing that the microtubules 

(MT; arrowed) are disorganized and distributed throughout the cytoplasm of platelets 

from case 10 compared to controls in which microtubules are organized into the 

marginal band. Images were collected using an EM900 (Carl Zeiss) electron 

microscope. Scale bar, 0.5 μm. (G) Manual counting of microtubules revealed an 

increased number of microtubules in platelets from the cases (n=41 platelets) 

compared with controls (n=104 platelets). Microtubule numbers per platelet are 

expressed as mean ± s.d. Unpaired Student’s t-test, ***P<0.001.  

 

Figure 6. Increased microtubule stability in platelets from R1213* cases. (A-C) 

Representative confocal microscopy images (A, C) and quantification of the 

microtubule surface (B) of platelets from R1213* cases (10 and 16) and from a 

control (C) after incubation at 4°C (A, B) or after treatment with the microtubule 

destabilizing toxin colchicine (10 µM; B, C). F-actin (F-act) is displayed as red and 

post-translationally modified α-tubulin (ac-tub and Glu-tub) as green. Values are 

expressed as means ± s.d. (n=3 controls versus case 10 and 16; 100 platelets). 

Wilcoxon-Mann-Whitney-test, ***P<0.001. (D) Representative confocal microscopy 

images of platelets after spreading on fibrinogen (2.5 µg cm-2). F-act is displayed as 

red and α-tub, ac-tub or Glu-tub as green. Platelets in (A, C, and D) were visualized 

using a Leica TCS SP5 confocal microscope (Leica Microsystems). Scale bars, 

3 μm. (E) Quantification of the fluorescence intensity (FI) per surface unit of the 

immunostaining for F-actin and posttranslational modifications on α-tubulin. Values 

are expressed as means ± s.d. (n=3 controls versus case 10 and 16; 100 platelets). 

Wilcoxon-Mann-Whitney-test, ***P<0.001. (F) Western blots of the platelet 

microtubule cytoskeleton in total protein extract (T) or in pellet (P) or soluble (S) 
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fractions separated by ultracentrifugation, probed with antibodies recognizing Tyr-

tub, ac-tub or Glu-tub. Data are presented from resting platelets (rest) and after 

treatment with 10 µM colchicine (colch). (C, healthy control; 10, case 10 and 16, 

case 16). Equivalent quantities of total platelet extract protein were loaded in each 

lane. (G, H) Densitometric analyses of the immunoblots. The data are expressed as 

the means ± s.d. of the ratios of the stable microtubule markers ac-tubulin (G) and 

Glu-tubulin (H) to the content of the dynamic microtubule marker Tyr-tubulin (n=3 

blots). Rest, resting platelets; colch, 10 µM colchicine-treated platelets; P, pellet 

tubulin fraction; S, soluble tubulin fraction; T, total protein extract. Unpaired Student’s 

t-test, *P<0.05; **P<0.01; ***P<0.001; NS, non-significant. 

  

Figure 7. Overexpression of DIAPH1 R1213* in cell lines reproduces the 

cytoskeletal alterations in platelets. (A) Western blot of protein extracts from 

HEK293FT cells transfected with DIAPH1 wild-type (WT), DIAPH1 R1213* (R1213*) 

or empty (C) expression constructs, probed with antibodies recognizing the DIAPH1 

amino terminus, DIAPH2 or DIAPH3. (B, C) Confocal microscopy images of A549 

cells transiently transfected with the DIAPH1 WT or R1213* expression constructs 

were stained for DIAPH1 (cyan), F-actin (red) and α-tubulin (B) or acetylated-tubulin 

(ac-tubulin; green; C) and with DAPI nuclear counterstain (blue). (D) Quantification 

of the relative fluorescence intensity per surface unit of transfected and non-

transfected cells revealed an increased content of F-actin, α-tubulin and ac-tubulin 

in the cells overexpressing DIAPH1 R1213* compared with adjacent non-

transfected cells (differences are indicated by asterisks) and DIAPH1 WT 

(differences are indicated by hash tags) overexpressing cells. (E, F) Incubation with 

the FH2 domain inhibitor SMIFH2 reduced F-actin content, but not the content of 
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microtubules and ac-tubulin as determined by quantification of the relative 

fluorescence intensity (FI) per surface unit. Values in (D) and (F) are expressed as 

means ± s.d. (n=100 cells). Wilcoxon-Mann-Whitney-test, **P<0.01; ***P<0.001; NS, 

non-significant. The cells were visualized using a Leica TCS SP5 confocal 

microscope (Leica Microsystems). Scale bars, 10 µm.  
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Table 1. Characteristics of eight cases with the DIAPH 1 R1213* variant. Data from the haematological tests are presented 
as the minimum and maximum values observed in all available results from the cases. * indicates result ranges from which at 
least one value is outside age and sex adjusted laboratory reference intervals. ** indicates that every observed test result was 
outside laboratory reference interval. † bleeding score determined using the International Society of Thrombosis and 
Haemostasis Bleeding Assessment Tool. Pathological bleeding is associated with bleeding scores >4. NK, not known; HFSN, 
high frequency sensorineural; C, conductive. 

Pedigree 1 2 

Case 10 14 15 16 17 21 22 24 

Gender M F M F F F M M 

Year of birth in 5-year 
bins 

1951-55 1976-80 1976-80 1981-85 1976-80 1976-80 2001-05 2006-10 

Platelet count 

(x109 L-1) 
69-110** 97** 140-147** 66-114** 94-107** 63-115** 116-129** 93-102** 

Mean platelet volume 

(fL) 
13.6** 11.2** 13.5** 13.1-14.1** 12.1** 13.2** 12.9** 13.2** 

Neutrophil count 

(x109 L-1) 
1.21** 1.49* 1.66* 3.11-3.74 0.9-2.27* 1.29-4.34* 0.64-1.84* 0.62-1.02* 

Hemoglobin 

(g dL-1) 
13.2-14.1 12.7 15 12.3-12.5 10.9-12.4* 10.2-12.6* 11.2-11.9* 10.4-11.1* 

Bleeding score† 

(<4) 
1 1 1 1 1 1 1 1 

Type of hearing loss HFSN HFSN HFSN, C HFSN HFSN HFSN HFSN HFSN 

Age of hearing loss 

(years) 
8 2 8 6 6 nk 2 1 
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Table 2. Quantitative morphometric evaluation of platelet size parameters and the number of α-granules of cases 10, 16, 17 
and controls using electron microscopy. *n corresponds to the number of platelet sections examined. P<0.01 is considered significant 
(P<0.01 vs control by † Student’s t test and ‡ χ² test) 

 

 

 

Groups (n)* Area [µm2] Maximal diameter 
[µm] 

Minimal diameter 
[µm] 

% platelets >4 µm2 Number of α-granules 
per µm2 

Control (862) 2.53 ± 1.47 2.89 ± 0.67 1.09 ± 0.46 10.90 2.6 ± 0.1 

P10 (99) 3.90 ± 2.50† 3.17 ± 0.76† 1.51 ± 0.73† 31.26‡ 3.23 ± 1.46†  

P16 (107) 6.84 ± 4.92† 3.77 ± 0.96† 2.14 ± 0.91† 71.03‡ 2.45 ± 0.95 

P17 (100) 5.48 ± 3.30† 3.64 ± 0.90† 1.85 ± 0.81† 49.00‡ 2.46 ± 1.26 


