58 research outputs found

    Maintaining Disturbance-Dependent Habitats

    Get PDF

    Alternative pathways to a sustainable future lead to contrasting biodiversity responses

    Get PDF
    Land-use change is currently the main driver of biodiversity loss. Projections of land-use change are often used to estimate potential impacts on biodiversity of future pathways of human development. However, such analyses frequently neglect that species can persist in human-modified habitats. Our aim was to estimate changes in biodiversity, considering affinities for multiple habitats, for three different land-use scenarios. Two scenarios focused on more sustainable trajectories of land-use change, based on either technological improvements (Pathway A) or societal changes (Pathway B), and the third reflected the historical or business-as-usual trends (Pathway 0). Using Portugal as a case study, we produced spatially-explicit projections of land-use change based on these pathways, and then we assessed the resulting changes in bird species richness and composition projected to occur by 2050 in each of the scenarios. By 2050, alpha and gamma diversity were projected to decrease, relative to 2010, in Pathway 0 and increase in Pathways A and B. However, different pathways favored different species groups, and presented strong regional differences. In the technological improvement pathway, loss of extensive agricultural areas led to an increase in both natural and extensive forest areas. In this pathway, forest species increase at the expense of farmland species, while in the societal change pathway the reverse occurs, as extensive agricultural areas were projected to increase. We show that while multiple positive pathways (A and B) for biodiversity can be envisioned, they will lead to differential impacts on biodiversity depending on the transformational changes in place and the regional socio-economic context. Our results suggest that considering compositional aspects of biodiversity can be critical in choosing the appropriate regional land-use policies

    Domestic Livestock and Rewilding: Are They Mutually Exclusive?

    Get PDF
    Human influence extends across the globe, fromthe tallestmountains to the deep bottom of the oceans. There is a growing call for nature to be protected from the negative impacts of human activity (particularly intensive agriculture); so-called “land sparing”. A relatively new approach is “rewilding”, defined as the restoration of self-sustaining and complex ecosystems, with interlinked ecological processes that promote and support one another while minimising or gradually reducing human intervention. The key theoretical basis of rewilding is to return ecosystems to a “natural” or “self-willed” state with trophic complexity, dispersal (and connectivity) and stochastic disturbance in place. However, this is constrained by context-specific factors whereby it may not be possible to restore the native species that formed part of the trophic structure of the ecosystem if they are extinct (e.g., mammoths, Mammuthus spp., aurochs, Bos primigenius); and, populations/communities of native herbivores/predators may not be able to survive or be acceptable to the public in small scale rewilding projects close to areas of high human density. Therefore, the restoration of natural trophic complexity and disturbance regimes within rewilding projects requires careful consideration if the broader conservation needs of society are to be met. In some circumstances, managers will require a more flexible deliberate approach to intervening in rewilding projects using the range of tools in their toolbox (e.g., controlled burning regimes; using domestic livestock to replicate the impacts of extinct herbivore species), even if this is only in the early stages of the rewilding process. If this approach is adopted, then larger areas can be given over to conservation, because of the potential broader benefits to society from these spaces and the engagement of farmers in practises that are closer to their traditions. We provide examples, primarily European, where domestic and semi-domestic livestock are used by managers as part of their rewilding toolbox. Here managers have looked at the broader phenotype of livestock species as to their suitability in different rewilding systems. We assess whether there are ways of using livestock in these systems for conservation, economic (e.g., branded or certified livestock products) and cultural gains

    Domestic Livestock and Rewilding: Are They Mutually Exclusive?

    Get PDF
    Water is fundamental to human well-being, social development and the environment. Water development, particularly hydropower, provides an important source of renewable energy. Water development is strongly affected by poverty, but only few attempts have been made to understand the links between water development and poverty from a global water development point of view. In this work, this linkage was explored using reservoir construction, hydroenergy and water use data along with six derived indicators. We used association rule mining and classification and regression trees (CART) to identify the links. Random forests were employed to search for factors sensitive to poverty. This study shows that the reservoir density is significantly related to poverty, and reservoir densities are lower in countries with higher poverty rates. Countries with a higher use of small hydropower (SHP) systems are generally more prosperous as follows: an SHP utilization.JR-L is supported by GRAZELIFE, a LIFE Preparatory Project on request of the European Commission (LIFE18PRE/NL002). LNis supported by the German Centre for integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118)

    Alternative pathways to a sustainable future lead to contrasting biodiversity responses

    Get PDF
    Land-use change is currently the main driver of biodiversity loss. Projections of land-use change are often used to estimate potential impacts on biodiversity of future pathways of human development. However, such analyses frequently neglect that species can persist in human-modified habitats. Our aim was to estimate changes in biodiversity, considering affinities for multiple habitats, for three different land-use scenarios. Two scenarios focused on more sustainable trajectories of land-use change, based on either technological improvements (Pathway A) or societal changes (Pathway B), and the third reflected the historical or business-as-usual trends (Pathway 0). Using Portugal as a case study, we produced spatially-explicit projections of land-use change based on these pathways, and then we assessed the resulting changes in bird species richness and composition projected to occur by 2050 in each of the scenarios. By 2050, alpha and gamma diversity were projected to decrease, relative to 2010, in Pathway 0 and increase in Pathways A and B. However, different pathways favored different species groups, and presented strong regional differences. In the technological improvement pathway, loss of extensive agricultural areas led to an increase in both natural and extensive forest areas. In this pathway, forest species increase at the expense of farmland species, while in the societal change pathway the reverse occurs, as extensive agricultural areas were projected to increase. We show that while multiple positive pathways (A and B) for biodiversity can be envisioned, they will lead to differential impacts on biodiversity depending on the transformational changes in place and the regional socio-economic context. Our results suggest that considering compositional aspects of biodiversity can be critical in choosing the appropriate regional land-use policies

    Mining threats in high‐level biodiversity conservation policies

    Get PDF
    Amid a global infrastructure boom, there is increasing recognition of the ecological impacts of the extraction and consumption of construction minerals, mainly processed as concrete, including significant and expanding threats to global biodiversity. We investigated how high‐level national and international biodiversity conservation policies address mining threats, with a special focus on construction minerals. We conducted a review and quantified the degree to which threats from mining these minerals are addressed in biodiversity goals and targets under the 2011–2020 and post‐2020 biodiversity strategies, national biodiversity strategies and action plans, and the assessments of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services. Mining appeared rarely in national targets but more frequently in national strategies. Yet, in most countries, it was superficially addressed. Coverage of aggregates mining was greater than coverage of limestone mining. We outline 8 key components, tailored for a wide range of actors, to effectively mainstream biodiversity conservation into the extractive, infrastructure, and construction sectors. Actions include improving reporting and monitoring systems, enhancing the evidence base around mining impacts on biodiversity, and modifying the behavior of financial agents and businesses. Implementing these measures could pave the way for a more sustainable approach to construction mineral use and safeguard biodiversity

    The geography of biodiversity change in marine and terrestrial assemblages

    Get PDF
    This work was supported by funding to the sChange working group through sDiv, the synthesis center of iDiv, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118). S.A.B., H.B., J.M.C., J.H., and M.W. were supported by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. S.R.S. was supported by U.S. National Science Foundation grant 1400911. LHA was supported by Fundação para a CiĂȘncia e Tecnologia, Portugal (POPH/FSE SFRH/BD/90469/2012), and by the Jane and Aatos Erkko Foundation. M.D. was supported by a Leverhulme Trust Fellowship. A.E.M., F.M., and M.D. were supported by ERC AdG BioTIME 250189 and PoC BioCHANGE 727440. A.G. is supported by the Liber Ero Chair in Biodiversity Conservation.Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.PostprintPostprintPeer reviewe

    Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes

    Get PDF
    Abstract Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined. We compiled global gridded datasets on climate change, land-use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world. We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo-Pacific with high climate change and high fishing). We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers. Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world.Peer reviewe
    • 

    corecore