58 research outputs found

    Pollen-inferred regional vegetation patterns and demographic change in Southern Anatolia through the Holocene

    Get PDF
    Southern Anatolia is a highly significant area within the Mediterranean, particularly in terms of understanding how agriculture moved into Europe from neighbouring regions. This study uses pollen, palaeoclimate and archaeological evidence to investigate the relationships between demography and vegetation change, and to explore how the development of agriculture varied spatially. Data from 21 fossil pollen records have been transformed into forested, parkland and open vegetation types using cluster analysis. Patterns of change have been explored using non-metric multidimensional scaling (nMDS) and through analysis of indicator groups, such as an Anthropogenic Pollen Index, and Simpson’s Diversity. Settlement data, which indicate population densities, and summed radiocarbon dates for archaeological sites have been used as a proxy for demographic change. The pollen and archaeological records confirm that farming can be detected earlier in Anatolia in comparison with many other parts of the Mediterranean. Dynamics of change in grazing indicators and the OJCV (Olea, Juglans, Castanea and Vitis) index for cultivated trees appear to match cycles of population expansion and decline. Vegetation and land use change is also influenced by other factors, such as climate change. Investigating the early impacts of anthropogenic activities (e.g. woodcutting, animal herding, the use of fire and agriculture) is key to understanding how societies have modified the environment since the mid–late Holocene, despite the capacity of ecological systems to absorb recurrent disturbances. The results of this study suggest that shifting human population dynamics played an important role in shaping land cover in central and southern Anatolia

    The changing face of the Mediterranean: land cover, demography, and environmental change

    Get PDF
    This paper introduces a special issue on The Changing Face of the Mediterranean: Land Cover, Demography, and Environmental Change, which brings together up-to-date regional or thematic perspectives on major long-term trends in Mediterranean human–environment relations. Particularly, important insights are provided by palynology to reconstruct past vegetation and land cover, and archaeology to establish long-term demographic trends, but with further significant input from palaeoclimatology, palaeofire research and geomorphology. Here, we introduce the rationale behind this pan-Mediterranean research initiative, outline its major sources of evidence and method, and describe how individual submissions work to complement one another

    Stable oxygen isotopes in Romanian oak tree rings record summer droughts and associated large-scale circulation patterns over Europe

    Get PDF
    We present the first annual oxygen isotope record (1900 – 2016) from the latewood (LW) cellulose of oak trees (Quercus robur) from NW Romania. As expected, the results correlate negatively with summer relative humidity, sunshine duration and precipitation and positively with summer maximum temperature. Spatial correlation analysis reveals a clear signal reflecting drought conditions at a European scale. Interannual variability is influenced by large-scale atmospheric circulation and by surface temperatures in the North Atlantic Ocean and the Mediterranean Sea. There is considerable potential to produce long and well-replicated oak tree ring stable isotope chronologies in Romania which would allow reconstructions of both regional drought and large-scale circulation variability over southern and central Europe

    Moving from contractor to owner operator: Impact on safety culture; a case study

    Get PDF
    Purpose – The purpose of this paper is to investigate whether a change in staffing contractual arrangements, specific training in hazard identification, mentoring of supervisors and the introduction of a robust safety system could improve an organisation\u27s safety culture. How safety conditions change under contracted out labour compared to direct labour and the influence that contracting out has on organisational safety culture is explored. Design/methodology/approach – The study used a case study methodology to detail how the change occurred over a six month period in 2011. As part of the analysis a model of the change process and push-pull factors is offered. Findings – As a result of the change, all areas saw some improvement. Work-related injury statistics dropped significantly, supervisors were clear of their roles, actively monitoring their crews to ensure they worked in a safer manner than before, and staff were actively addressing work-place hazards. With the safety system in place the organisation should be deemed compliant and diligent by the state auditing authorities. This study has also shown that using contractor workers together with in-house workers that are managed under different safety regimes is problematic. The problems don’t occur due to the contractor\u27s safety systems being less robust than the parent company\u27s or that contract workers are themselves less safe; it is the added complexity of managing multiple safety regimes and the lack of trust of the robustness of each system that create conflict. Research limitations/implications – The paper reports on the change process of one mining organisation in Western Australia as a case study from a managerial sample and is thereby limited. Practical implications – This study demonstrates the difficulties in changing safety culture in an underground mining organisation. The paper argues the need for specialised training in identifying hazards by the staff, the mentoring of supervisory staff and the adoption of a robust safety system to support improved safety culture. Originality/value – There is little research conducted in the resources sector researching changes in human resource supply and OHS management, in particular moving from contracted labour to hiring in-house. This case provides an insight into how a change in staffing hiring arrangements, together with specific safety initiatives, has a positive impact on safety performance

    GSK3β Regulates Differentiation and Growth Arrest in Glioblastoma

    Get PDF
    Cancers are driven by a population of cells with the stem cell properties of self-renewal and unlimited growth. As a subpopulation within the tumor mass, these cells are believed to constitute a tumor cell reservoir. Pathways controlling the renewal of normal stem cells are deregulated in cancer. The polycomb group gene Bmi1, which is required for neural stem cell self-renewal and also controls anti-oxidant defense in neurons, is upregulated in several cancers, including medulloblastoma. We have found that Bmi1 is consistently and highly expressed in GBM. Downregulation of Bmi1 by shRNAs induced a differentiation phenotype and reduced expression of the stem cell markers Sox2 and Nestin. Interestingly, expression of glycogen synthase kinase 3 beta (GSK3β), which was found to be consistently expressed in primary GBM, also declined. This suggests a functional link between Bmi1 and GSK3β. Interference with GSK3β activity by siRNA, the specific inhibitor SB216763, or lithium chloride (LiCl) induced tumor cell differentiation. In addition, tumor cell apoptosis was enhanced, the formation of neurospheres was impaired, and clonogenicity reduced in a dose-dependent manner. GBM cell lines consist mainly of CD133-negative (CD133-) cells. Interestingly, ex vivo cells from primary tumor biopsies allowed the identification of a CD133- subpopulation of cells that express stem cell markers and are depleted by inactivation of GSK3β. Drugs that inhibit GSK3, including the psychiatric drug LiCl, may deplete the GBM stem cell reservoir independently of CD133 status

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data–model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data–model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices

    Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines

    Full text link
    The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin. © 2014 Elsevier B.V.We thank the personnel of the PNOMP and PNAESM National Parks, A.Q. Alla and G. Sangüesa-Barreda for their help during the sampling and in dendrochronological analyses and also in making Fig. 1. We thank Loïc Schneider (WSL) for his collaboration in making Fig. A14. This study was supported by projects 012⁄2008 and 387⁄2011 (Organismo Autónomo Parques Nacionales, MMAMRM, Spain) and by a JAE-CSIC grant to J.D.G. J.J.C. acknowledges the support of ARAID. We also acknowledge funding by projects, which further contributed to build this data set (FoRmat EUENV4-CT97-0641, CiCyTAMB95-0160). We thank the editor and two anonymous reviewers for their constructive comments, which helped us to improve the manuscript.Peer Reviewe

    Simultaneous quantitative detection of relevant biomarkers in breast cancer by quantitative real-time PCR

    Full text link
    The assessment of ERa, PgR and HER2 status is routinely performed today to determine the endocrine responsiveness of breast cancer samples. Such determination is usually accomplished by means of immunohistochemistry and in case of HER2 amplification by means of fluorescent in situ hybridization (FISH). The analysis of these markers can be improved by simultaneous measurements using quantitative real-time PCR (Qrt-PCR). In this study we compared Qrt-PCR results for the assessment of mRNA levels of ERa, PgR, and the members of the human epidermal growth factor receptor family, HER1, HER2, HER3 and HER4. The results were obtained in two independent laboratories using two different methods, SYBR Green I and TaqMan probes, and different primers. By linear regression we demonstrated a good concordance for all six markers. The quantitative mRNA expression levels of ERa, PgR and HER2 also strongly correlated with the respective quantitative protein expression levels prospectively detected by EIA in both laboratories. In addition, HER2 mRNA expression levels correlated well with gene amplification detected by FISH in the same biopsies. Our results indicate that both Qrt-PCR methods were robust and sensitive tools for routine diagnostics and consistent with standard methodologies. The developed simultaneous assessment of several biomarkers is fast and labor effective and allows optimization of the clinical decision-making process in breast cancer tissue and/or core biopsies
    corecore