16 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Méthodologie de conception et d'utilisation d'algorithme d'intelligence artificielle à partir de données à caractÚre sensible : étude et application à la reconnaissance acoustique sous-marine

    No full text
    In this thesis, we study a set of techniques for functional encryption application for machine learning models training on confidential data. After reviewing the major state-ofthe- art functional encryption schemes, we propose combinations and adaptations of existing schemes. We pay particular attention to those based on lattice-based problems LWE and RLWE for their post-quantum properties. For experimental purposes, we unfold scenarios using functional encryption to train and use classification models on image and acoustic data. We demonstrate the feasibility of applying this type of cryptographic construction to industrial use cases. In particular, we report examples of functional decryptions for the computation of principal component analysis, linear discriminant analysis and Fourier transform, as well as the computation of neural layers of linear and quadratic convolutions. Finally, we propose a set of methods for finding functional encryption parameters that maximize the performance of models to be learned, while guaranteeing a given level of security and probability of decryption correctness.Dans cette thĂšse nous Ă©tudions un ensemble de techniques relatives Ă  l’application du chiffrement fonctionnel pour la conception de modĂšles d’apprentissage automatique sur donnĂ©es Ă  caractĂšre confidentiel. AprĂšs avoir passĂ© en revu les schĂ©mas de chiffrement fonctionnels majeurs de l’état de l’art, nous proposons des combinaisons et des adaptations de schĂ©mas existants. Nous portons une attention particuliĂšre aux schĂ©mas basĂ©s sur les problĂšmes de rĂ©seaux LWE et RLWE pour leurs propriĂ©tĂ©s post-quantiques. A des fins d’expĂ©rimentations, nous dĂ©roulons des scĂ©narios d’utilisation du chiffrement fonctionnel pour la conception et l’exploitation de modĂšles de classification sur des donnĂ©es de type images et acoustiques. Nous dĂ©montrons ainsi la faisabilitĂ© d’application de ce type de construction cryptographique Ă  des cas d’usage industriels. En particulier, nous rapportons des exemples de dĂ©chiffrements fonctionnels permettant le calcul d’analyse par composantes principales, d’analyse discriminante linĂ©aire et de transformĂ©e de Fourier, ainsi que le calcul de couches neuronales de convolutions linĂ©aires et quadratiques. Enfin, nous proposons un ensemble de mĂ©thodes pour la recherche de paramĂštres de chiffrement fonctionnel maximisant les performances des modĂšles Ă  apprendre tout en garantissant un niveau de sĂ©curitĂ© et une probabilitĂ© d’exactitude de dĂ©chiffrement

    Méthodologie de conception et d'utilisation d'algorithme d'intelligence artificielle à partir de données à caractÚre sensible : étude et application à la reconnaissance acoustique sous-marine

    No full text
    In this thesis, we study a set of techniques for functional encryption application for machine learning models training on confidential data. After reviewing the major state-ofthe- art functional encryption schemes, we propose combinations and adaptations of existing schemes. We pay particular attention to those based on lattice-based problems LWE and RLWE for their post-quantum properties. For experimental purposes, we unfold scenarios using functional encryption to train and use classification models on image and acoustic data. We demonstrate the feasibility of applying this type of cryptographic construction to industrial use cases. In particular, we report examples of functional decryptions for the computation of principal component analysis, linear discriminant analysis and Fourier transform, as well as the computation of neural layers of linear and quadratic convolutions. Finally, we propose a set of methods for finding functional encryption parameters that maximize the performance of models to be learned, while guaranteeing a given level of security and probability of decryption correctness.Dans cette thĂšse nous Ă©tudions un ensemble de techniques relatives Ă  l’application du chiffrement fonctionnel pour la conception de modĂšles d’apprentissage automatique sur donnĂ©es Ă  caractĂšre confidentiel. AprĂšs avoir passĂ© en revu les schĂ©mas de chiffrement fonctionnels majeurs de l’état de l’art, nous proposons des combinaisons et des adaptations de schĂ©mas existants. Nous portons une attention particuliĂšre aux schĂ©mas basĂ©s sur les problĂšmes de rĂ©seaux LWE et RLWE pour leurs propriĂ©tĂ©s post-quantiques. A des fins d’expĂ©rimentations, nous dĂ©roulons des scĂ©narios d’utilisation du chiffrement fonctionnel pour la conception et l’exploitation de modĂšles de classification sur des donnĂ©es de type images et acoustiques. Nous dĂ©montrons ainsi la faisabilitĂ© d’application de ce type de construction cryptographique Ă  des cas d’usage industriels. En particulier, nous rapportons des exemples de dĂ©chiffrements fonctionnels permettant le calcul d’analyse par composantes principales, d’analyse discriminante linĂ©aire et de transformĂ©e de Fourier, ainsi que le calcul de couches neuronales de convolutions linĂ©aires et quadratiques. Enfin, nous proposons un ensemble de mĂ©thodes pour la recherche de paramĂštres de chiffrement fonctionnel maximisant les performances des modĂšles Ă  apprendre tout en garantissant un niveau de sĂ©curitĂ© et une probabilitĂ© d’exactitude de dĂ©chiffrement

    A methodology for machine learning models training on confidential data

    No full text
    Dans cette thĂšse nous Ă©tudions un ensemble de techniques relatives Ă  l’application du chiffrement fonctionnel pour la conception de modĂšles d’apprentissage automatique sur donnĂ©es Ă  caractĂšre confidentiel. AprĂšs avoir passĂ© en revu les schĂ©mas de chiffrement fonctionnels majeurs de l’état de l’art, nous proposons des combinaisons et des adaptations de schĂ©mas existants. Nous portons une attention particuliĂšre aux schĂ©mas basĂ©s sur les problĂšmes de rĂ©seaux LWE et RLWE pour leurs propriĂ©tĂ©s post-quantiques. A des fins d’expĂ©rimentations, nous dĂ©roulons des scĂ©narios d’utilisation du chiffrement fonctionnel pour la conception et l’exploitation de modĂšles de classification sur des donnĂ©es de type images et acoustiques. Nous dĂ©montrons ainsi la faisabilitĂ© d’application de ce type de construction cryptographique Ă  des cas d’usage industriels. En particulier, nous rapportons des exemples de dĂ©chiffrements fonctionnels permettant le calcul d’analyse par composantes principales, d’analyse discriminante linĂ©aire et de transformĂ©e de Fourier, ainsi que le calcul de couches neuronales de convolutions linĂ©aires et quadratiques. Enfin, nous proposons un ensemble de mĂ©thodes pour la recherche de paramĂštres de chiffrement fonctionnel maximisant les performances des modĂšles Ă  apprendre tout en garantissant un niveau de sĂ©curitĂ© et une probabilitĂ© d’exactitude de dĂ©chiffrement.In this thesis, we study a set of techniques for functional encryption application for machine learning models training on confidential data. After reviewing the major state-ofthe- art functional encryption schemes, we propose combinations and adaptations of existing schemes. We pay particular attention to those based on lattice-based problems LWE and RLWE for their post-quantum properties. For experimental purposes, we unfold scenarios using functional encryption to train and use classification models on image and acoustic data. We demonstrate the feasibility of applying this type of cryptographic construction to industrial use cases. In particular, we report examples of functional decryptions for the computation of principal component analysis, linear discriminant analysis and Fourier transform, as well as the computation of neural layers of linear and quadratic convolutions. Finally, we propose a set of methods for finding functional encryption parameters that maximize the performance of models to be learned, while guaranteeing a given level of security and probability of decryption correctness

    Application du chiffrement fonctionnel sur données confidentielles pour la conception de modÚles d'apprentissage automatique

    No full text
    International audienceL'accÚs aux données est un prérequis à la conception de modÚle par apprentissage automatique. Dans certains secteurs d'application, comme la santé, le bancaire ou la défense, les données sont jugées confidentielles si bien que leur partage est particuliÚrement complexe, voire impossible. En réponse à ce verrou applicatif, nous nous intéressons dans ces travaux au chiffrement fonctionnel, technique de cryptographie qui permet l'accÚs sécurisé à fonction spécifique de données chiffrées. En nous appuyant sur un cas d'application concret de l'industrie de défense, nous montrons que le chiffrement fonctionnel est d'ores et déjà applicable à des données représentatives de la réalité industrielle et étudions son impact sur les performances de modÚles obtenus par apprentissage automatique

    Immune thrombocytopenia (ITP) World Impact Survey (iWish): patient and physician perceptions of diagnosis, signs and symptoms, and treatment

    No full text
    Immune thrombocytopenia (ITP) is now well‐known to reduce patients' health‐related quality of life. However, data describing which signs and symptoms patients and physicians perceive as having the greatest impact are limited, as is understanding the full effects of ITP treatments. I‐WISh (ITP World Impact Survey) was an exploratory, cross‐sectional survey designed to establish the multifaceted impact of ITP, and its treatments, on patients' lives. It focused on perceptions of 1507 patients and 472 physicians from 13 countries regarding diagnostic pathway, frequency and severity of signs and symptoms, and treatment use. Twenty‐two percent of patients experienced delayed diagnosis (caused by several factors), 73% of whom felt anxious as a result. Patients rated fatigue among the most frequent, severe symptom associated with ITP at diagnosis (58% most frequent; 73% most severe), although physicians assigned it lower priority (30%). Fatigue was one of the few symptoms persisting at survey completion (50% and 65%, respectively) and was the top symptom patients wanted resolved (46%). Participating physicians were experienced at treating ITP, thereby recognizing the need to limit corticosteroid use to newly‐diagnosed or first‐relapse patients and espoused increased use of thrombopoietin receptor agonists and anti‐CD20 after relapse in patients with persistent/chronic disease. Patient and physicians were largely aligned on diagnosis, symptoms, and treatment use. I‐WISh demonstrated that patients and physicians largely align on overall ITP symptom burden, with certain differences, for example, fatigue. Understanding the emotional and clinical toll of ITP on the patient will facilitate shared decision‐management, setting and establishment of treatment goals and disease stage‐appropriate treatment selection

    Immune thrombocytopenia (ITP) World Impact Survey (I-WISh): Impact of ITP on health-related quality of life

    No full text
    Immune thrombocytopenia (ITP) has a substantial, multifaceted impact on patients' health‐related quality of life (HRQoL). Data describing which aspects of ITP physicians and patients perceive as having the greatest impact are limited. The ITP World Impact Survey (I‐WISh) was a cross‐sectional survey, including 1507 patients and 472 physicians, to establish the impact of ITP on HRQoL and productivity from patient and physician perspectives. Patients reported that ITP reduced their energy levels (85% of patients), capacity to exercise (77%), and limited their ability to perform daily tasks (75%). Eighty percent of physicians reported that ITP symptoms reduced patient HRQoL, with 66% reporting ITP‐related fatigue substantially reduced patient HRQoL. Patients believed ITP had a substantial impact on emotional well‐being (49%) and 63% worried their condition would worsen. Because of ITP, 49% of patients had already reduced, or seriously considered reducing their working hours, and 29% had considered terminating their employment. Thirty‐six percent of patients employed at the time of the survey felt ITP decreased their work productivity, while 51% of patients with high/very high symptom burden reported that ITP affected their productivity. Note, I‐WISh demonstrated substantive impact of ITP on patients' HRQoL both directly for patients and from the viewpoint of their physicians. Patients reported reduced energy levels, expressed fears their condition might worsen, and those who worked experienced reduced productivity. Physicians should be aware not only of platelet counts and bleeding but also the multi‐dimensional impact of ITP on patients' lives as an integral component of disease management
    corecore