149 research outputs found

    Cloud-Based Technology Solution for Remote Work and Learning

    Get PDF
    The hydrographic industry is undergoing radical changes in mission and technology to bring rise to a new global hydrospatial movement supporting the blue economy. Teledyne CARIS and Ocean Floor Geophysics, with academic and research partners, are joining forces to develop new solutions for remote survey operations, processing, and mapping with the strategic hydrospatial contribution of H2i. As part of this collaboration, CARIS desktop applications are being integrated into CARIS Cloud Technology to support access to software through web services allowing companies to transition processing personnel out of field situations as well as for improving opportunities for remote learning. This redistribution of personnel will provide efficiencies, cost savings, and reduce the human risk in such work, while increasing operational capacity

    Resistive switching and charge transport mechanisms in ITO/ZnO/p-Si devices

    Full text link
    [EN] The resistive switching properties of ITO/ZnO/p-Si devices have been studied, which present well-defined resistance states with more than five orders of magnitude difference in current. Both the high resistance state (HRS) and the low resistance state (LRS) were induced by either sweeping or pulsing the voltage, observing some differences in the HRS. Finally, the charge transport mechanisms dominating the pristine, HRS, and LRS states have been analyzed in depth, and the obtained structural parameters suggest a partial re-oxidation of the conductive nanofilaments and a reduction of the effective conductive area.This work was financially supported by the Spanish Ministry of Economy and Competitiveness (Project Nos. TEC2012-38540-C02-01 and TEC2016-76849-C2-1-R). O.B. also acknowledges the subprogram "Ayudas para Contratos Predoctorales para la Formacion de Doctores" of the Spanish Ministry of Economy and Competitiveness for economical support. X.P., C.L., and C.G. are grateful to C. Frilay for his expertise in the maintenance of the sputtering kit used for the growth of the ZnO films.BlĂĄzquez, O.; Frieiro, J.; LĂłpez-Vidrier, J.; Guillaume, C.; Portier, X.; LabbĂ©, C.; Sanchis Kilders, P.... (2018). Resistive switching and charge transport mechanisms in ITO/ZnO/p-Si devices. Applied Physics Letters. 113(18):1-6. https://doi.org/10.1063/1.50469111611318I. G. Baek , M. S. Lee , S. Sco , M. J. Lee , D. H. Seo , D.S. Suh , J. C. Park , S. O. Park , H. S. Kim , I. K. Yoo , U.I. Chung , and J. T. Moon , in IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004 ( IEEE, 2004), pp. 587–590.Waser, R., & Aono, M. (2007). Nanoionics-based resistive switching memories. Nature Materials, 6(11), 833-840. doi:10.1038/nmat2023Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., 
 Aono, M. (2005). A nonvolatile programmable solid-electrolyte nanometer switch. IEEE Journal of Solid-State Circuits, 40(1), 168-176. doi:10.1109/jssc.2004.837244Strukov, D. B., & Likharev, K. K. (2005). CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology, 16(6), 888-900. doi:10.1088/0957-4484/16/6/045Mehonic, A., Cueff, S., Wojdak, M., Hudziak, S., Jambois, O., LabbĂ©, C., 
 Kenyon, A. J. (2012). Resistive switching in silicon suboxide films. Journal of Applied Physics, 111(7), 074507. doi:10.1063/1.3701581Mehonic, A., Vrajitoarea, A., Cueff, S., Hudziak, S., Howe, H., LabbĂ©, C., 
 Kenyon, A. J. (2013). Quantum Conductance in Silicon Oxide Resistive Memory Devices. Scientific Reports, 3(1). doi:10.1038/srep02708Pickett, M. D., Medeiros-Ribeiro, G., & Williams, R. S. (2012). A scalable neuristor built with Mott memristors. Nature Materials, 12(2), 114-117. doi:10.1038/nmat3510Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., & Lu, W. (2010). Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Letters, 10(4), 1297-1301. doi:10.1021/nl904092hVescio, G., Crespo-Yepes, A., Alonso, D., Claramunt, S., Porti, M., Rodriguez, R., 
 Aymerich, X. (2017). Inkjet Printed HfO2-Based ReRAMs: First Demonstration and Performance Characterization. IEEE Electron Device Letters, 38(4), 457-460. doi:10.1109/led.2017.2668599Valov, I. (2013). Redox-Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale. ChemElectroChem, 1(1), 26-36. doi:10.1002/celc.201300165MartĂ­n, G., GonzĂĄlez, M. B., Campabadal, F., PeirĂł, F., Cornet, A., & EstradĂ©, S. (2017). Transmission electron microscopy assessment of conductive-filament formation in Ni–HfO2–Si resistive-switching operational devices. Applied Physics Express, 11(1), 014101. doi:10.7567/apex.11.014101Simanjuntak, F. M., Panda, D., Wei, K.-H., & Tseng, T.-Y. (2016). Status and Prospects of ZnO-Based Resistive Switching Memory Devices. Nanoscale Research Letters, 11(1). doi:10.1186/s11671-016-1570-yKim, J., & Yong, K. (2011). Mechanism Study of ZnO Nanorod-Bundle Sensors for H2S Gas Sensing. The Journal of Physical Chemistry C, 115(15), 7218-7224. doi:10.1021/jp110129fYuan, Q., Zhao, Y.-P., Li, L., & Wang, T. (2009). Ab Initio Study of ZnO-Based Gas-Sensing Mechanisms: Surface Reconstruction and Charge Transfer. The Journal of Physical Chemistry C, 113(15), 6107-6113. doi:10.1021/jp810161jSeo, J. W., Park, J.-W., Lim, K. S., Yang, J.-H., & Kang, S. J. (2008). Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Applied Physics Letters, 93(22), 223505. doi:10.1063/1.3041643Rahaman, S. Z., Maikap, S., Chiu, H.-C., Lin, C.-H., Wu, T.-Y., Chen, Y.-S., 
 Tsai, M.-J. (2010). Bipolar Resistive Switching Memory Using Cu Metallic Filament in Ge[sub 0.4]Se[sub 0.6] Solid Electrolyte. Electrochemical and Solid-State Letters, 13(5), H159. doi:10.1149/1.3339449Simanjuntak, F. M., Panda, D., Tsai, T.-L., Lin, C.-A., Wei, K.-H., & Tseng, T.-Y. (2015). Enhancing the memory window of AZO/ZnO/ITO transparent resistive switching devices by modulating the oxygen vacancy concentration of the top electrode. Journal of Materials Science, 50(21), 6961-6969. doi:10.1007/s10853-015-9247-ySimanjuntak, F. M., Prasad, O. K., Panda, D., Lin, C.-A., Tsai, T.-L., Wei, K.-H., & Tseng, T.-Y. (2016). Impacts of Co doping on ZnO transparent switching memory device characteristics. Applied Physics Letters, 108(18), 183506. doi:10.1063/1.4948598Simanjuntak, F. M., Panda, D., Tsai, T.-L., Lin, C.-A., Wei, K.-H., & Tseng, T.-Y. (2015). Enhanced switching uniformity in AZO/ZnO1−x/ITO transparent resistive memory devices by bipolar double forming. Applied Physics Letters, 107(3), 033505. doi:10.1063/1.4927284Liu, Q., Guan, W., Long, S., Jia, R., Liu, M., & Chen, J. (2008). Resistive switching memory effect of ZrO[sub 2] films with Zr[sup +] implanted. Applied Physics Letters, 92(1), 012117. doi:10.1063/1.2832660Shuai, Y., Zhou, S., BĂŒrger, D., Helm, M., & Schmidt, H. (2011). Nonvolatile bipolar resistive switching in Au/BiFeO3/Pt. Journal of Applied Physics, 109(12), 124117. doi:10.1063/1.3601113Chen, J.-Y., Hsin, C.-L., Huang, C.-W., Chiu, C.-H., Huang, Y.-T., Lin, S.-J., 
 Chen, L.-J. (2013). Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories. Nano Letters, 13(8), 3671-3677. doi:10.1021/nl4015638Hubbard, W. A., Kerelsky, A., Jasmin, G., White, E. R., Lodico, J., Mecklenburg, M., & Regan, B. C. (2015). Nanofilament Formation and Regeneration During Cu/Al2O3 Resistive Memory Switching. Nano Letters, 15(6), 3983-3987. doi:10.1021/acs.nanolett.5b00901Liu, Q., Sun, J., Lv, H., Long, S., Yin, K., Wan, N., 
 Liu, M. (2012). Real-Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide-Electrolyte-Based ReRAM. Advanced Materials, 24(14), 1844-1849. doi:10.1002/adma.201104104Zhu, X., Wu, H.-Z., Qiu, D.-J., Yuan, Z., Jin, G., Kong, J., & Shen, W. (2010). Photoluminescence and resonant Raman scattering in N-doped ZnO thin films. Optics Communications, 283(13), 2695-2699. doi:10.1016/j.optcom.2010.03.006Cerqueira, M. F., Vasilevskiy, M. I., Oliveira, F., Rolo, A. G., Viseu, T., Ayres de Campos, J., 
 Correia, R. (2011). Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputtering. Journal of Physics: Condensed Matter, 23(33), 334205. doi:10.1088/0953-8984/23/33/334205Marchewka, A., Roesgen, B., Skaja, K., Du, H., Jia, C.-L., Mayer, J., 
 Menzel, S. (2015). Nanoionic Resistive Switching Memories: On the Physical Nature of the Dynamic Reset Process. Advanced Electronic Materials, 2(1), 1500233. doi:10.1002/aelm.201500233Krzywiecki, M., Grządziel, L., Sarfraz, A., Iqbal, D., Szwajca, A., & Erbe, A. (2015). Zinc oxide as a defect-dominated material in thin films for photovoltaic applications – experimental determination of defect levels, quantification of composition, and construction of band diagram. Physical Chemistry Chemical Physics, 17(15), 10004-10013. doi:10.1039/c5cp00112aMurgatroyd, P. N. (1970). Theory of space-charge-limited current enhanced by Frenkel effect. Journal of Physics D: Applied Physics, 3(2), 151-156. doi:10.1088/0022-3727/3/2/308Electron emission in intense electric fields. (1928). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119(781), 173-181. doi:10.1098/rspa.1928.0091ÖzgĂŒr, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., 
 Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 041301. doi:10.1063/1.1992666Kaidashev, E. M., Lorenz, M., von Wenckstern, H., Rahm, A., Semmelhack, H.-C., Han, K.-H., 
 Grundmann, M. (2003). High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Applied Physics Letters, 82(22), 3901-3903. doi:10.1063/1.1578694Gall, D. (2016). Electron mean free path in elemental metals. Journal of Applied Physics, 119(8), 085101. doi:10.1063/1.4942216Lee, W., Park, J., Kim, S., Woo, J., Shin, J., Choi, G., 
 Hwang, H. (2012). High Current Density and Nonlinearity Combination of Selection Device Based on TaOx/TiO2/TaOx Structure for One Selector–One Resistor Arrays. ACS Nano, 6(9), 8166-8172. doi:10.1021/nn3028776Kwon, D.-H., Kim, K. M., Jang, J. H., Jeon, J. M., Lee, M. H., Kim, G. H., 
 Hwang, C. S. (2010). Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology, 5(2), 148-153. doi:10.1038/nnano.2009.456Choi, B. J., Torrezan, A. C., Strachan, J. P., Kotula, P. G., Lohn, A. J., Marinella, M. J., 
 Yang, J. J. (2016). High‐Speed and Low‐Energy Nitride Memristors. Advanced Functional Materials, 26(29), 5290-5296. doi:10.1002/adfm.201600680Sun, X. (2006). Designing efficient field emission into ZnO. SPIE Newsroom. doi:10.1117/2.1200602.0101Hu, C., Wang, Q., Bai, S., Xu, M., He, D., Lyu, D., & Qi, J. (2017). The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory. Applied Physics Letters, 110(7), 073501. doi:10.1063/1.4976512Gul, F., & Efeoglu, H. (2017). Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor. Superlattices and Microstructures, 101, 172-179. doi:10.1016/j.spmi.2016.11.043BlĂĄzquez, O., MartĂ­n, G., Camps, I., Mariscal, A., LĂłpez-Vidrier, J., RamĂ­rez, J. M., 
 Garrido, B. (2018). Memristive behaviour of Si-Al oxynitride thin films: the role of oxygen and nitrogen vacancies in the electroforming process. Nanotechnology, 29(23), 235702. doi:10.1088/1361-6528/aab744Bersuker, G., Gilmer, D. C., Veksler, D., Kirsch, P., Vandelli, L., Padovani, A., 
 NafrĂ­a, M. (2011). Metal oxide resistive memory switching mechanism based on conductive filament properties. Journal of Applied Physics, 110(12), 124518. doi:10.1063/1.367156

    Light-activated electroforming in ITO/ZnO/p-Si resistive switching devices

    Full text link
    We report on light-activated electroforming of ZnO/p-Si heterojunction memristors with transparent indium tin oxide as the top electrode. Light-generated electron-hole pairs in the p-type substrate are separated by the external electric field and electrons are injected into the active ZnO layer. The additional application of voltage pulses allows achieving different resistance states that end up in the realization of the low resistance state (LRS). This process requires much less voltage compared to dark conditions, thus avoiding undesired current overshoots and achieving a self-compliant device. The transport mechanisms governing each resistance state are studied and discussed. An evolution from an electrode-limited to a space charge-limited transport is observed along the electroforming process before reaching the LRS, which is ascribed to the progressive formation of conductive paths that consequently induce the growth of conductive nanofilaments through the ZnO layer. This work was financially supported by the Spanish Ministry of Economy and Competitiveness (Project Nos. TEC2012-38540-C02-01 and TEC2016-76849-C2-1-R). O.B. also acknowledges the subprogram "Ayudas para Contratos Predoctorales para la FormaciĂłn de-Doctores" from the Spanish Ministry of Economy and Competitiveness for economical support. J.L.F. acknowledges the subprogram "Ayudas para la FormaciĂłn de Profesorado Universitario" (No. FPU16/06257) from the Spanish Ministry of Education, Culture and Sports for economical support. X.P., C.L., and C.G. are grateful to C. Frilay for his expertise in the maintenance of the sputtering setup used for the growth of the ZnO films

    New techniques for wound management: A systematic review of their role in the management of chronic wounds

    Get PDF
    International audienceDebridement is a crucial component of wound management. Recent technologies such as hydrosurgery (Versajet), ultrasound therapy (the MIST therapy device), or plasma-mediated bipolar radio-frequency ablation therapy (Coblation) seem to represent interesting alternatives for wound debridement. The purpose of this systematic review was to describe, evaluate, and compare these three recently developed methods for the management of chronic wounds. In January 2016, an electronic database search was conducted of MEDLINE, PubMed Central, and Embase for articles concerning these three innovative methods for the management of chronic wounds. A total of 389 references were identified by our search strategy, and 15 articles were included. We extracted data regarding the number and age of patients, indications, operating time, number of procedures, costs, wound healing time, decrease in exudation, perioperative blood loss, bacterial load, and the occurrence of complications. The 15 articles included studies that involved 563 patients who underwent hydrosurgery (7 studies), ultrasound therapy (6 studies), or Coblation (2 studies). Six randomized controlled trials were included that compared the use of a scalpel or curette to hydrosurgery (2 studies) or ultrasound therapy (6 studies). Hydrosurgery, in addition to being a very precise and selective tool, allows significantly faster debridement. Ultrasound therapy provides a significant reduction of exudation, and improves the wound healing time. No comparative study dedicated to Coblation was identified. Despite the obvious clinical interest of the topic, our review of the current literature revealed a lack of prospective randomized studies comparing these devices with each other or with standard techniques, particularly for Coblation and hydrosurgery

    Toward RGB LEDs based on rare earth-doped ZnO

    Get PDF
    By using ZnO thin films doped with Ce, Tb or Eu, deposited via radiofrequency magnetron sputtering, we have developed monochromatic (blue, green and red, respectively) light emitting devices (LEDs). The rare earth ions introduced with doping rates lower than 2% exhibit narrow and intense emission peaks due to electronic transitions in relaxation processes induced after electrical excitation. This study proves zinc oxide to be a good host for these elements, its high conductivity and optical transparency in the visible range being as well exploited as top transparent electrode. After structural characterization of the different doped layers, a device structure with intense electroluminescence is presented, modeled, and electrically and optically characterized. The different emission spectra obtained are compared in a chromatic diagram, providing a reference for future works with similar devices. The results hereby presented demonstrate three operating monochromatic LEDs, as well as a combination of the three species into another one, with a simply-designed structure compatible with current Si technology and demonstrating an integrated red-green-blue emission

    Consumer perceptions and purchase behavior toward imperfect fruits and vegetables in an immersive virtual reality grocery store

    Get PDF
    This study investigates the effects of fruits and vegetables (FaVs) abnormality on consumer perceptions and purchasing behavior. For the purposes of the study, a virtual grocery store was created with a fresh FaVs section, where 142 participants became immersed using an Oculus Rift DK2 Head-Mounted Display (HMD) software. Participants were presented either “normal”, “slightly” misshapen, “moderately” misshapen or “severely” misshapen” FaVs. The study findings indicate that shoppers tend to purchase a similar number of FaVs whatever their level of deformity. However, perceptions of the appearance and quality of the FaVs depend on the degree of abnormality. “Moderately” misshapen FaVs are perceived as significantly better than those that are “heavily” misshapen but also “slightly” misshapen (except for the appearance of fruits)

    Loss of hepatic DEPTOR alters the metabolic transition to fasting

    Get PDF
    Objective The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions into distinct protein complexes (mTORC1 and mTORC2) that regulates growth and metabolism. DEP-domain containing mTOR-interacting protein (DEPTOR) is part of these complexes and is known to reduce their activity. Whether DEPTOR loss affects metabolism and organismal growth in vivo has never been tested. Methods We have generated a conditional transgenic mouse allowing the tissue-specific deletion of DEPTOR. This model was crossed with CMV-cre mice or Albumin-cre mice to generate either whole-body or liver-specific DEPTOR knockout (KO) mice. Results Whole-body DEPTOR KO mice are viable, fertile, normal in size, and do not display any gross physical and metabolic abnormalities. To circumvent possible compensatory mechanisms linked to the early and systemic loss of DEPTOR, we have deleted DEPTOR specifically in the liver, a tissue in which DEPTOR protein is expressed and affected in response to mTOR activation. Liver-specific DEPTOR null mice showed a reduction in circulating glucose upon fasting versus control mice. This effect was not associated with change in hepatic gluconeogenesis potential but was linked to a sustained reduction in circulating glucose during insulin tolerance tests. In addition to the reduction in glycemia, liver-specific DEPTOR KO mice had reduced hepatic glycogen content when fasted. We showed that loss of DEPTOR cell-autonomously increased oxidative metabolism in hepatocytes, an effect associated with increased cytochrome c expression but independent of changes in mitochondrial content or in the expression of genes controlling oxidative metabolism. We found that liver-specific DEPTOR KO mice showed sustained mTORC1 activation upon fasting, and that acute treatment with rapamycin was sufficient to normalize glycemia in these mice. Conclusion We propose a model in which hepatic DEPTOR accelerates the inhibition of mTORC1 during the transition to fasting to adjust metabolism to the nutritional status. Keywords: DEPTOR; mTOR; Liver; Glucose; Fastin

    Seafloor morphology and substrate mapping in the Gulf of St Lawrence, Canada, using machine learning approaches

    Get PDF
    Detailed maps of seafloor substrata and morphology can act as valuable proxies for predicting and understanding the distributions of benthic communities and are important for guiding conservation initiatives. High resolution acoustic remote sensing data can facilitate the production of detailed seafloor maps, but are cost-prohibitive to collect and not widely available. In the absence of targeted high resolution data, global bathymetric data of a lower resolution, combined with legacy seafloor sampling data, can provide an alternative for generating maps of seafloor substrate and morphology. Here we apply regression random forest to legacy data in the Gulf of St Lawrence, Canada, to generate a map of seabed sediment distribution. We further apply k-means clustering to a principal component analysis output to identify seafloor morphology classes from the GEBCO bathymetric grid. The morphology classification identified most morphological features but could not discriminate valleys and canyons. The random forest results were in line with previous sediment mapping work done in the area, but a large proportion of zero values skewed the explained variance. In both models, improvements may be possible with the introduction of more predictor variables. These models prove useful for generating regional seafloor maps that may be used for future management and conservation applications

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and RĂ©union Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)
    • 

    corecore