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Detailed maps of seafloor substrata and morphology can act as valuable proxies

for predicting and understanding the distributions of benthic communities and

are important for guiding conservation initiatives. High resolution acoustic

remote sensing data can facilitate the production of detailed seafloor maps,

but are cost-prohibitive to collect and not widely available. In the absence of

targeted high resolution data, global bathymetric data of a lower resolution,

combined with legacy seafloor sampling data, can provide an alternative for

generating maps of seafloor substrate and morphology. Here we apply

regression random forest to legacy data in the Gulf of St Lawrence, Canada, to

generate a map of seabed sediment distribution. We further apply k-means

clustering to a principal component analysis output to identify seafloor

morphology classes from the GEBCO bathymetric grid. The morphology

classification identified most morphological features but could not discriminate

valleys and canyons. The random forest results were in line with previous

sediment mapping work done in the area, but a large proportion of zero values

skewed the explained variance. In both models, improvements may be possible

with the introduction of more predictor variables. These models prove useful for

generating regional seafloor maps that may be used for future management and

conservation applications.
KEYWORDS

random forest, principal component analysis, K-means (KM) clustering, seafloor
morphology, seafloor mapping, sediment, bathymetry, legacy data
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1 Introduction

Coastal marine ecosystems face significant anthropogenic

pressures due to the goods and services they provide and the ease

with which these may be accessed (Halpern et al., 2008). Globally,

over 90% of international trade occurs via shipping (Mudryk et al.,

2021), and these routes must pass through coastal ecosystems to get

to port. Coastal fisheries also represent a significant impact, with

fishing effort in many coastal regions increasing over the years and

leading to habitat degradation caused by the gear deployed (Stewart

et al., 2010). The Gulf of St. Lawrence (GSL) on the east coast of

Canada is one of many such ecosystems facing these anthropogenic

threats. It includes busy shipping routes that connect the Atlantic

Ocean to the Great Lakes, and supports total fisheries landings

valued at over 788 million dollars (DFO, 2021). Because of its

prominent location, lucrative fishing grounds, and access it provides

to inland North America, the GSL is considered one of the most

important parts of the Canadian coast (Loring and Nota, 1973).

Informed and sustainable management is critical to ensure

ecological health of the GSL and continued use of these resources.

Seafloor sediment composition and morphology can act as

effective surrogates for understanding biodiversity patterns at the

seafloor which can be valuable for marine conservation planning

(McArthur et al., 2010; Tecchiato et al., 2015; Wilson et al., 2018).

Sessile filter feeders such as sponges often require hard substrate on

which to anchor, while fine-grained sediments provide habitat for

burrowers. Seafloor morphology may correlate strongly with

hydrodynamics and sedimentation (Tecchiato et al., 2015;

Miramontes et al., 2019), and can be a useful proxy for

understanding spatial patterns of fauna and seafloor substrates.

For instance, steep-sloped features such as seamounts and

submarine canyons propagate internal tides, which act as efficient

mechanisms for food transport (Mohn et al., 2014). Particulate

organic matter may be transported along the faces of such

morphological features due to the interactions between

topography and internal tides, which enables settlement of

suspension-feeding cold-water corals.

Morphological features can be defined by the values of their

bathymetric derivatives (e.g., slope degree, terrain ruggedness,

bathymetric variance, etc.). These derivatives can be calculated

from readily available digital elevation models (DEMs). The

General Bathymetric Chart of the Oceans (GEBCO; GEBCO

Compilation Group, 2021) has created a global bathymetric grid

using a variety of datasets. The grid is primarily derived from

satellite altimetry measurements, but also includes other modern

datasets such as multibeam echosounder data. Legacy datasets are

incorporated as well, and in the GSL these legacy bathymetric

datasets have been collected for over a century and consist of lead

line data and single beam echosounder data (CHS, 2022). As a

result, the morphology of the GSL seafloor is generally understood,

but a morphological classification scheme has yet to be applied.

Over a period of 10 years, Loring and Nota (1973) collected

sediment samples and seafloor images to produce a map of the

sediment distribution of the GSL. This interpretation required an

expert depth of localised knowledge on the geological history and

hydrodynamics of the region (Diesing et al., 2014). The Loring &
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Nota interpretation considered local hydrodynamics and bathymetry,

but the physical oceanographic models (e.g., Wang et al., 2018; Li

et al., 2021) and DEMs (e.g., GEBCO Compilation Group, 2021)

available today were not available to them at the time. Their sediment

map is discretised, with transitions between classes presented as solid

boundaries, manually interpreted from the discrete physical seafloor

point sediment samples. In reality, sediment boundaries may be

gradational rather than abrupt. Mapping sediment as a continuous

variable instead of a discrete one may allow for more accurate

estimates of species distributions when it is used as a predictor

(Wilson et al., 2018). Modern quantitative modelling approaches

can offer an alternative way to produce continuous coverage maps

depicting gradational changes in substrate parameters, and may

additionally be used to infer sediment composition in areas where

ground truth validation is not available (Misiuk and Brown, 2024).

This can be achieved by using geospatial models that treat substrate

parameters as a response variable to be predicted using continuous

coverage environmental data sets (e.g. bathymetry, seabed

morphology, physical oceanographic parameters such as current

speed and direction, etc.). Machine learning algorithms are

increasingly applied to predict sediment parameters with high

accuracy (e.g., Diesing et al., 2014; Stephens and Diesing, 2014;

Misiuk et al., 2019). Such approaches also show promise for

classification of seafloor morphology using bathymetric data and

derivatives (e.g., Jasiewicz and Stepinski, 2013; Maschmeyer

et al., 2019).

The goals of this paper is to 1) apply a machine learning

methodology to predict sediment grain size fractions observed in the

GSL legacy dataset using a modern suite of environmental predictors

and generate continuous maps of grain size distributions, and 2) apply

a morphological classification scheme to the seafloor of the GSL.
2 Materials and methods

2.1 Study area

The GSL (Figure 1) is bordered by the Canadian provinces of

Quebec, New Brunswick, Nova Scotia, Prince Edward Island, and

Newfoundland & Labrador. It connects the St. Lawrence Estuary to

the Northwest Atlantic Ocean via the Cabot Strait and the Strait of

Belle Isle on either side of Newfoundland. The GSL covers a total

area of 240,000 km2 and contains 3,553 km3 of water (Dufour and

Ouellet, 2007). It has an average depth of 152 m, with ~25% of the

area shallower than 75 m (Environment Canada, 2013). The deepest

part of the gulf is the Laurentian Channel, which begins at the St.

Lawrence Estuary and flows out into the Atlantic via the Cabot

Strait. As the channel reaches the Cabot Strait, it attains a maximum

depth of approximately 540 m (GEBCO Compilation Group, 2021).

The Laurentian Channel divides the GSL into northern and

southern regions. To the south lies a plateau with an average depth

of 80 m (Dufour and Ouellet, 2007). On this plateau is Prince

Edward Island and Les ıl̂es-De-La-Madeleine – a small island chain

under Quebec jurisdiction. To the northwest is the St. Lawrence

Estuary, divided into upper and lower sections, with the lower

section considered as part of the gulf. Eastward from the estuary,
frontiersin.org
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Anticosti Island splits the channel into the Laurentian Channel and

the Anticosti Channel. The Anticosti Channel connects to the

Esquiman Channel to the southeast of the island. The Esquiman

Channel enters the gulf from the Strait of Belle Isle between

Newfoundland and Labrador.

The GSL was covered by the Laurentide Ice Sheet (LIS) until

approximately 11,500 years ago (Casse et al., 2017). The rapid

retreat of the LIS at this time heavily influenced changes in sediment

deposition due to increased meltwater input into the GSL. In the

Laurentian Channel, a >450 m thick Quaternary sedimentary

succession has developed primarily due to high sedimentation

rates brought on by the LIS retreat and its associated meltwater

(Casse et al., 2017). The channel itself developed along a faulted

contact zone before being modified by glacial erosion during the

Quaternary period (Loring and Nota, 1973; Casse et al., 2017). The

deepening of the channel at the Cabot Strait is likely due to forced

narrowing by the surrounding terrestrial landforms increasing and

deepening the glacial erosion process (Loring and Nota, 1973).

The north shore of the Gulf, from the lower St. Lawrence Estuary

to the Strait of Belle Isle, is lined with submarine valleys and canyons

(Loring and Nota, 1973; Normandeau et al., 2015). Many of these are

pre-Paleozoic in origin, but were further carved by ice while the

Esquiman and Anticosti channels were undergoing a transition from

fluvial valleys to glacial troughs (Loring and Nota, 1973). The

predominance of canyons and valleys along the north shore,

especially compared to their near absence on the other shores of

the Gulf, can be attributed to a steep slope gradient from shore to

seafloor as well as the high volume of sediment that was transported

southward during the deglaciation that occurred 11,500 years ago

(Normandeau et al., 2015).
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2.2 Predictor variables

Seventeen predictor variables were used in the random forest and

are provided in Table 1. These predictors were selected based on

previous sediment modelling work (Diesing et al., 2014; Stephens and

Diesing, 2014; Misiuk et al., 2018; 2019; Bushuev et al., 2023).

Bathymetric data were obtained from GEBCO. GEBCO is a global

repository of bathymetric data compiled as part of the Nippon

Foundation-GEBCO Seabed 2030 Project, which has the goal of

mapping the entire seafloor by 2030 (GEBCO Compilation Group,

2021). The GEBCO 2021 data are gridded at 15 arc-second resolution,

equivalent to approximately 450 m at the equator. The grid was

downloaded for the extent of the GSL and projected to a custom

Lambert Conformal Conic projection with a central meridian longitude

of 61°W and standard parallel latitudes of 46°N and 50°N. Eight

morphometric derivatives were calculated from the bathymetry data

using the Benthic TerrainModeller (BTM) toolbox in ArcGIS Pro 2.7.3

(Walbridge et al., 2018; Goes et al., 2019). These derivatives are

bathymetric mean, bathymetric variance, standardised broadscale

and finescale bathymetric position indices (BPI), eastness, northness,

ruggedness, and slope (Table 1). BPI provides information on relative

vertical position of a focal cell (Walbridge et al., 2018). The BPI radius

values were selected based on previous work done with the BTM

toolbox (Walbridge et al., 2018). Bathymetric mean and variance

required a neighbourhood size for calculation. The neighbourhood

size is the maximum number of cells used in the calculation of a terrain

attribute (Misiuk et al., 2021). The neighbourhood size for variance and

mean were selected for consistency with the spatial scale of the BPI

measurements. Radius values and neighbourhood sizes used to

calculate predictors are provided in Table 1.
FIGURE 1

Study site - Gulf of St. Lawrence, Canada. Contour lines are drawn at 100 m intervals.
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Physical oceanographic predictor variables were interpolated

using inverse distance weighting to match the resolution of the

GEBCO grid. For benthic current magnitude and direction, data

were obtained from the Bedford Institute of Oceanography North

Atlantic Model (BNAM; Wang et al., 2018). BNAM is used by the

Department of Fisheries and Oceans Canada (DFO) to model

oceanographic conditions through space and time in the

Northwest Atlantic. BNAM predictions were provided at a

nominal resolution of 1/12° (approximately 6500 m). For seafloor

shear velocity and wave power, model predictions were provided at

a nominal resolution of 1/10° (approximately 7800 m; Li

et al., 2021).

Euclidean distance from the coast was calculated as a potential

proxy for terrestrial sediment input. Distance layers were calculated

for both the mainland coast and from islands smaller than 5,000

km2 based on the assumption sediment input from larger islands

may differ substantially from smaller islands. Prince Edward Island

and Anticosti are larger than 5,000 km2 and were therefore

considered “mainland”. The two Euclidean distance variables

were calculated at the same resolution as the GEBCO grid from a
Frontiers in Marine Science 04
polygon shapefile of shorelines obtained from Runfola et al. (2020)

using the Spatial Analyst toolbox in ArcGIS Pro 2.7.3.
2.3 Surficial sediment data

The original dataset used by Loring and Nota (1973) consisted

of approximately 1500 sediment samples that were collected

throughout the GSL using a 0.1 m2 Van Veen grab (Loring and

Nota, 1973). Of the original dataset, records containing grain size

composition for 223 samples were recovered at the Bedford

Institute of Oceanography (Figure 2). Data from the remaining of

the original 1500 samples could not be located. Of the data

recovered, 200 points contained non-zero values for mud, 214

non-zero values for sand, and 50 non-zero values for gravel.

Spatial autocorrelation for each of the three grain size classes was

assessed using Global Moran’s I (Moran, 1950). For a set of locations

and an associated attribute, this statistic tests the null hypothesis that

the attribute in question is randomly distributed by calculating

Moran’s Index with the model residuals. Moran’s Index ranges
TABLE 1 Predictor variables used in random forest sediment models.

Variable Calculation Method Data Source

Bathymetry (Supplementary Figure 4) N/A
GEBCO Compilation
Group, 2021

Bathymetric mean (Supplementary Figure 5) Benthic Terrain Modeler (neighbourhood size = 25)
GEBCO Compilation
Group, 2021

Bathymetric variance (Supplementary Figure 6) Benthic Terrain Modeler (neighbourhood size = 25)
GEBCO Compilation
Group, 2021

Standardised broadscale BPI (Supplementary Figure 7)
Benthic Terrain Modeler (inner radius=25,
outer radius=250)

GEBCO Compilation
Group, 2021

Standardised finescale BPI (Supplementary Figure 8)
Benthic Terrain Modeler (inner radius=3,
outer radius=25)

GEBCO Compilation
Group, 2021

Statistical aspect (eastness; Supplementary Figure 9) Benthic Terrain Modeler
GEBCO Compilation
Group, 2021

Statistical aspect (northness; Supplementary Figure 10) Benthic Terrain Modeler
GEBCO Compilation
Group, 2021

Terrain ruggedness (Vector ruggedness measure; Supplementary Figure 11) Benthic Terrain Modeler (neighbourhood size = 25)
GEBCO Compilation
Group, 2021

Slope degree (Supplementary Figure 12) Benthic Terrain Modeler
GEBCO Compilation
Group, 2021

Mean bottom current direction 1990-2015 (Supplementary Figure 13) Inverse Distance Weighting Wang et al., 2018

Mean bottom current magnitude 1990-2015 (Supplementary Figure 13) Inverse Distance Weighting Wang et al., 2018

Mean seafloor shear velocity 2002-2005 (Supplementary Figure 14) Inverse Distance Weighting Li et al., 2021

Maximum seafloor shear velocity 2002-2005 (Supplementary Figure 15) Inverse Distance Weighting Li et al., 2021

Maximum wave power 2002-2005 (Supplementary Figure 16) Inverse Distance Weighting Li et al., 2021

Mean wave power 2002-2005 (Supplementary Figure 17) Inverse Distance Weighting Li et al., 2021

Euclidean distance to mainland and islands > 5000 km2

(Supplementary Figure 18) Spatial Analyst toolbox Runfola et al., 2020

Euclidean distance to islands < 5000 km2 (Supplementary Figure 19) Spatial Analyst toolbox Runfola et al., 2020
N/A, Not Applicable.
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from -1 to 1. If the value is close to -1, then the spatial distribution of

the data is dispersed. If the value is close to 1, then the spatial

distribution of the data is clustered. If the value is close to 0, then the

spatial distribution of the data is random. The significance of the

index value is determined by a z score and p value. The Global

Moran’s I test was carried out using the Spatial Autocorrelation tool

in the Spatial Analyst toolbox of ArcGIS Pro 2.7.3.
2.4 Sediment modelling using
random forest

Legacy sediment data were used to model each of the three grain

size fractions using regression random forest to produce a broadscale

map of sediment distribution in the gulf. Random forest is a machine

learning algorithm that generates multiple classification or regression

trees with a randomly selected subset of the provided predictor

variables at each node in the tree (Breiman, 2001, 2002). Individual

trees are additionally grown using bootstrapped samples of the training

data to reduce the variance of the aggregated predictions, and the data

not drawn for a given tree (the “out-of-bag” [OOB] observations) may

be used to validate the model predictions. This is accomplished by

aggregating predictions over all the OOB samples once the full model

has been trained. A regression random forest was chosen to model

sediment as it is suitable for interpolating large datasets and is robust

against issues caused by noisy data and multicollinear or unimportant

predictor variables. To generate the random forest model, the

randomForest package in R was used (Liaw and Wiener, 2002). Five

hundred trees (ntree) and six predictor variables (mtry) at each tree

node were used for all three grain size fractions. The ntree value was
Frontiers in Marine Science 05
selected by plotting the OOB error rate against number of trees used

and selecting a value of ntree that corresponded to stabilised OOB error

values. The mtry value was selected based on a trial-and-error

procedure laid out by Breiman (2002), where multiple values are

attempted, beginning with the square root of the total number of

predictors, and the testing set error is checked for each attempt. The

code used to run the random forest models is provided online (https://

github.com/emilysklar/sediment_rf).

Model performance was evaluated using root mean squared

error (RMSE) and variance explained of the OOB observations.

RMSE calculates the root of the average squared difference between

predicted and observed values:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s

where yi and yî are observed and predicted values of the

response, respectively. The variance explained is calculated using

the ratio of the mean squared error to the variance of the response

observations:

%VE = (1�
1
non

i=1(yi − ŷ i)
2

1
non

i=1(yi − �y)2
)100

Predictor variable importance was evaluated using the mean

decrease in residual sum of squares (RSS). The more important a

predictor variable is to the model, the more the RSS decreases when

it is used at a tree node (Breiman, 2002).

Mud, sand, and gravel percentages of seafloor substrate are

compositional, and predicted values at each data point must sum to

unity. The additive log-ratio (ALR) transformation was initially
FIGURE 2

Distribution of sediment grain size samples from Loring and Nota (1973) that were recovered from the Bedford Institute of Oceanography. Location
points are presented as pie charts that indicate the grain size fractions of the given sample.
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applied to enforce a compositional output by modelling two

variables that are the log-ratios between percentages of sand and

gravel, and mud and gravel (Stephens and Diesing, 2015). A

preponderance of zero observations within the gravel class

necessitated imputation of small non-zero values to enable

logarithmic transformation for a large proportion (~78%) of data

points (Lark et al., 2012). We therefore additionally trialled a

separate approach wherein the raw data values are modelled

separately for each class and the outputs from these models are

optimised to a compositional scale after prediction. The ALR

models were outperformed by the optimised model outputs,

which were selected for all models presented hereafter. Additional

details and comparison are provided in Supplementary Material S2.

Code for performing the optimisation is provided online (https://

github.com/benjaminmisiuk/sNet). After modelling, predicted

proportions of mud, sand, and gravel were additionally classified

into grain size classes according to Folk (1954).
2.5 Seafloor morphology classification

An automated data-driven approach was used to distinguish

morphological features of the GSL. Morphometric features of the

bathymetric surface were initially classified using the r.geomorphon

tool in GrassGIS (Jasiewicz and Stepinski, 2013), yet the classified

output contained a large number of data artefacts relict from the

GEBCO bathymetry input raster. To obtain a more interpretable and

useable morphological classification, unsupervised classification was

used to identify objective morphometric features (Bushuev et al.,

2023). Principal components analysis (PCA) is an ordination

technique used to obtain a lower-dimensional linearly independent

set of features from a high-dimensional collinear input (Ismail et al.,

2015; Joliffe and Cadima, 2016; Lever et al., 2017). PCAwas applied to

bathymetry, bathymetric mean, bathymetric variance, broad- and

fine-scale BPIs, and slope raster layers using the RStoolbox package in

R (Leutner et al., 2022; Table 1). The first four principal components
Frontiers in Marine Science 06
were retained, which accounted for 94.3% of the variance of the input

variables. K-means clustering was then performed on the four

principal components to yield 10 clusters (k = 10). K-means is an

unsupervised learning algorithm that partitions a pre-defined

number of clusters in such a way that within-cluster variance is

minimised to the greatest extent possible (Lloyd, 1982; Malik and

Tuckfield, 2019). The elbow method (Thorndike, 1953) was initially

attempted to determine what the optimal value of k was, but the

results were inconclusive. Trial-and-error was then carried out with

the k-means clustering being run multiple times, each time with a

different value for k, to determine what the optimal number k value

was. Each iteration of the model was assessed by qualitatively

comparing the output to the GEBCO bathymetric grid for the area.

Code for the PCA k-means clustering procedure is available online

(https://github.com/esther-bushuev/morphology_clustering).

The 10 k-means clusters were used to identify eight morphological

classes in the GSL (Table 2), based on previous work reclassifying

morphological clustering outputs (Iwahashi et al., 2018). Classes were

determined based on the definitions provided in the literature, box

plots of the distribution of values for each predictor variable at each

cluster, and by comparing the model output to an output from the

r.geomorphon tool. The PCA k-means approach failed to correctly

classify canyons and valleys, instead identifying elongated slope features

between ridges. The valley class from the r.geomorphon output was

therefore supplanted into the model output wherever it occurred. The

PCA k-means output was retained at all other locations. The output

was compared qualitatively to expert interpretation of the bathymetry

raster to evaluate the quality of the classification.
3 Results

3.1 Substrate modelling

For all three grain size classes, the Global Moran’s I test failed to

reject the null hypothesis that the data was randomly distributed. For
TABLE 2 Morphological classifications assigned to the GSL.

Class Definition Adapted from

Shallow
channel floor

A broad, low-gradient feature within a bathymetric low, flanked by higher and steeper gradient features.
Shallower than 375 m. Dove et al., 2020

Deep
channel floor

A broad, low-gradient feature within a bathymetric low, flanked by higher and steeper gradient features.
Deeper than 375 m. Dove et al., 2020

Escarpment A steep feature of relatively constant slope that separates horizontal or gently sloping features. IHO, 2019

Slope A sloped feature, not as steep as an escarpment, that deepens to a point where the gradient decreases. IHO, 2019

Plane A flat surface. Dove et al., 2020

Ridge A feature of varying complexity that is longer than it is wide, with one steep side. IHO, 2019; Dove et al., 2020

Shoulder
A transitional feature between horizontal and sloped features, always at the upper edge of the
sloped feature. Jasiewicz and Stepinski, 2013

Footslope
A transitional feature between sloped and horizontal features, always at the lower edge of the
sloped feature. Jasiewicz and Stepinski, 2013

Valley/canyon
An elongated bathymetric low that slopes upward on both sides. Canyons have steeper slope gradients
than valleys.

Jasiewicz and Stepinski, 2013; Dove
et al., 2020
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mud, the Moran’s Index value was -0.035 with a p-value of 0.571. For

sand, the Moran’s Index value was -0.048 with a p-value of 0.422. For

gravel, the Moran’s Index value was -0.059 with a p-value of 0.311.

The random forest model for mud had the strongest performance,

explaining 79.4% of variance in the mud observations (Table 3). Gravel,

which contained the lowest number of non-zero values in the dataset,

had the weakest performance, with 19.5% of variance explained by the

model. Observed and predicted values for each model are provided in

Figure 3. The line of best fit for the mud predictions was closest to the

x=y line, while gravel was furthest. This indicates that the gravel model

residuals weremostly positive for observed values close to 0, andmostly

negative for observed values close to 1.

For all three sediment classes modelled, bathymetry, bathymetric

mean, and maximum shear velocity were three of the top four most

important predictor variables (Figure 4). Broadscale BPI was in the top

four for sand andmud, but for gravel the fourth variable wasmaximum

wave power. Mud percentage was highest when bathymetry values

were deeper than approximately 300 m, while gravel and sand

percentages were lowest in these areas and highest when bathymetry

was shallower than approximately 80 m.

Modelled grain size fraction distributions and Folk classifications

are presented in Figure 5. Gravelly sand was the most common Folk

class, comprising approximately 31% of the total modelled area

(Figure 5D, Table 4). Muddy sandy gravel was the rarest Folk class,

covering <0.01% of the total modelled area.
3.2 Morphology classification

Each k-means cluster of the PCA outputs was assigned to a single

class except for the plane and escarpment classes, which each comprise

two k-means clusters. The two plane clusters plot close together in

multidimensional space according to the first three principal

components (Figure 6), as do the two escarpment clusters.

Interquartile ranges (IQR) of 4 out of the 7 predictor variables

additionally overlapped for the two plane clusters (Figure 7). Shallow

and deep channel floors also had overlapping IQRs for 4 of 7 predictors,

but were retained as separate classes due to their multivariate distance

(Figure 6) and the clear division of the clusters at a depth of 375 m. The

two escarpment clusters were similar in that their boxplot maxima were

higher than any other clusters for all 7 predictor variables, and they often

had wider value ranges than any other class (Figure 7).

Shallow channel floor, deep channel floor, and plane classes were

defined by low IQRs and a low median value for slope, bathymetric

variance, bathymetric standard deviation, finescale BPI, and

broadscale BPI compared to the other classes in the model

(Figure 7). These low values imply relatively flat, level features.
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These classes were differentiated by bathymetry and bathymetric

mean. The deep channel floor class was characterised by a

bathymetric low with the greatest median depth of any

morphology class (407 m). The plane class was a bathymetric high

(median cluster depths 57 m and 76 m), and the shallow channel

floor was between the deep channel floor and the plane classes

(median depth 276 m). The shallow channel floor class was always

bordered by morphological classes that, by definition, involve a

changing of depth, such as footslopes and slopes (Figure 8).

The ridge cluster is considered a bathymetric high based on the

high median value for bathymetry (114 m) and bathymetric mean

(111 m; Figure 7). Ridges also have a high median slope value

(2.64°) similar to the escarpment clusters (1.96° and 2.84°; Figure 7).

Ridges and escarpments are distinguished by bathymetric variance.

The two escarpment clusters indicated higher bathymetric variance

than any other clusters, while the median bathymetric variance of

the ridge classification was lower.

Footslope and shoulder clusters had similar median values for

bathymetric variance, bathymetric standard deviation, and slope.

Median bathymetry characterised shoulders as bathymetric highs

(68 m), with footslopes being deeper (276 m). This is reflected in

Figure 8, where shoulders mainly appear along the edge of planes, a

bathymetric high, and footslopes appear along the edges of channel

floors, which are bathymetric lows.
3.3 Sediment distribution by
morphology class

Mud was the dominant grain size class present in the channel

floors, with a median value of approximately 87.5% in both shallow

and deep channels (Figures 9, 5A). The channel floor classes

contained the lowest proportions of gravel and sand out of any

morphological class, with median values of 0.45% for gravel on the

deep channel floor and 0.33% for the shallow channel floor

(Figures 9, 5C). For sand, median percentage was approximately

11.8% for both floor classes (Figures 9, 5B). Gravel had the highest

median proportion on planes, with median values of 27.6%. By

contrast, planes had the lowest proportion of mud out of all

morphological classes, with median values of 10.5%.

The “gravelly sand” Folk class was present in every morphological

class of the GSL, except for the two channel floor classes (Figure 10).

Gravelly sand was most common on shoulders, ridges, and

escarpments. All three of these morphological classes start at a

bathymetric high and slope downward on one side. The two channel

floor classes were approximately 97% covered by the “slightly gravelly

mud” Folk class. In both channel floor classes, the other Folk classes

were “gravelly mud” and “slightly gravelly muddy sand”.
4 Discussion

4.1 Sediment distribution modelling

Gravel most commonly occurred on the southern plateau, with

the random forest model predicting up to approximately 74% gravel
TABLE 3 Model validation statistics for each sediment class.

Sediment class
% Variance
explained RMSE

Mud 79.40 0.18

Sand 45.47 0.27

Gravel 19.54 0.26
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in parts of this region. Sand was also predicted here in high

proportions, reaching 98% at some locations. Folk classes in the

area were mixtures of sand and gravel (Figure 5D). While the data

density in the southern plateau is relatively low compared to the rest
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of the study area (Figure 2), Loring and Nota (1973) also indicated

mixtures of gravel and sand, which they had sampled

comprehensively. This provides greater confidence in that region

despite the lower number of samples available for modelling.
B

C

A

FIGURE 3

Observed and predicted values for the data points in the three random forest sediment models: mud (A), sand (B), and gravel (C). The black line is
given by y=x, where the predicted and observed values are the same. The dashed line is the line of best fit between observed and predicted values.
B

C

A

FIGURE 4

Variable importance, presented as mean decrease in residual sum of squares (RSS), for the mud (A), sand (B), and gravel (C) random forest models.
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The gravel predictions demonstrated the weakest performance

of the three grain size models, with a VE of 19.5%. However, gravel

also contained only 50 non-zero samples, while the other two

sediment types had over 200, and the RMSE for sand was higher

than that of gravel. The VE of the gravel predictions is affected by

the high proportion of zero values, which lowers the variance of the

dataset. The high number of zeros also skewed the spread of

residuals, as these data points could only have positive residuals

and no negatives (Figure 3).

Maximum seafloor shear velocity was consistently one of the most

important predictor variables in all three models. Shear velocity is
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known to be influenced by morphology and influences morphology in

turn through erosion (Stow et al., 2009; Breitzke et al., 2017). The

erosion of morphological features on the seafloor can also contribute to

sedimentation rate and thus the sediment class (Stow et al., 2009). In

the GSL, the highest values for max shear velocity occurred where the

terrain was classified as “plane”, such as the southern plateau, peaking

at 0.225 cm/s (Supplementary Figure 13). Areas classified as planes

were almost always comprised of sand and gravel Folk classes (e.g.,

gravelly sand, sandy gravel, etc.). High current velocities directly

influence shear velocities, and only sediments of larger grain sizes are

deposited under these conditions (Stow et al., 2009). Max shear velocity

was reduced in the channels identified here, with values as low as 0.017

cm/s in some places. Slower velocities allow for smaller grain sizes to

settle (Stow et al., 2009), corroborating random forest models here that

predicted up to 98% mud composition in the channels.

The presence of hard substrate is an important consideration from

a benthic ecological perspective, which may support different benthic

assemblages (e.g. primarily epifauna) compared to unconsolidated,

finer-grained substrata which are dominated by infaunal species

(Harris and Baker, 2011). Data used here for sediment grain size

models were obtained by physical sampling (e.g., grabs), which limited

model predictions to size fractions smaller than cobble. Loring and

Nota (1973) noted the presence of outcropping bedrock in the GSL but

there were insufficient data on the presence of hard substrata (e.g.,

exposed bedrock, boulders) for geospatial modelling in our analyses.

Future work could aim to model hard substrates in the GSL by

obtaining ground truth seafloor imagery data, potentially coupled
FIGURE 5

Grain size predictions for mud (A), sand (B), and gravel (C) fractions, with Folk classification (D). Contour lines are at 50 m intervals.
TABLE 4 Total area and percent cover for each Folk class.

Folk class Area (km2) Percent of total area

Muddy sandy gravel 3.22 1.64x10-3

Sandy gravel 41992.03 21.38

Gravelly mud 817.72 0.42

Gravelly muddy sand 835.72 0.43

Gravelly sand 60371.49 30.74

Slightly gravelly mud 58270.88 29.67

Slightly gravelly
muddy sand 11907.03 6.06

Slightly gravelly sand 22202.99 11.31
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with additional remote sensing data such as acoustic backscatter.

Presence/absence models could then be used to predict hard

substrata, and outputs could be integrated with sediment predictions

presented here to provide a more comprehensive understanding of

substrate distribution in the GSL (e.g., Misiuk et al., 2019).

Legacy data used here were collected over 50 years ago; it is

therefore important to consider the possibility of temporal

variability in the sediment distribution of the GSL. Geological

processes are slow, with sediment accumulation rates in the ocean

typically measured at rates of metres per thousand years (Sadler,

1981; Gingerich, 2021). However, anthropogenic disturbance may

modify the benthos over shorter time periods (Houziaux et al., 2011;

Oberle et al., 2016). Trawlers may dispose of collected sediment in

different locations to facilitate future trawling activities (Houziaux

et al., 2011). Larger clasts, such as gravels, may thus be replaced over

time by finer-grained sediment such as sand. Trawling may also

resuspend fine-grained sediment and induce off-shelf sediment

transport from continental shelves on par with the volumes

transported by river-supplied sediment (Oberle et al., 2016).

Dredging may also be conducted, either to maintain proper depth

to ensure safe passage of vessels or to collect materials such as gravel

and sand for construction (de Groot, 1986). This leads to mass

displacement and removal of sediments; in the Canadian Atlantic

region, which includes but is not limited to the GSL, 5.7 million

m3/yr of sand and gravel were extracted between 1979 and 1983 (de

Groot, 1986). Anthropogenic impacts such as these were not

considered in our sediment models, and are often neglected when

modelling sediment distribution and transport (Oberle et al., 2016).
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Correspondence between sediment type and morphology

predictions were observed spatially over the GSL. Folk classes that

were mixtures of sand and gravel were predominantly associated

with planes. Channel floors (both shallow and deep) were

dominated by high percentages of mud and the “slightly gravelly

mud” Folk class. Sloped bathymetric highs, such as shoulders and

ridges, contained high percentages of sand. Many of the predictor

variables in the grain size models provided morphological

information pertaining to the shape of the seafloor (e.g.,

broadscale BPI, bathymetric variance). One of the most important

predictors, maximum shear velocity, is not a measure of seafloor

morphology but is heavily influenced by it. Previous studies have

identified the importance of morphological information in

sediment distribution models (Stephens and Diesing, 2015;

Misiuk et al., 2018; Wilson et al., 2018; Misiuk et al., 2019), but

this trend has not previously been formally identified in the GSL

with respect to morphological classification.
4.2 Morphology classification

DEMs are frequently used to apply morphological classification

schemes to the seafloor and to land, often with the aid of machine

learning (e.g., Ismail et al., 2015; Iwahashi et al., 2018; Maschmeyer

et al., 2019; Barbarella et al., 2021; Lin et al., 2021), but the

application of PCA followed by k-means is relatively new in the

context of morphology classification. Expert interpretation may be

performed to classify DEMs according to morphology or
B

C

A

FIGURE 6

The first 3 principal components (PC1, PC2, PC3) of seafloor morphology variables, coloured according to k-means cluster, in a three dimensional
plot. (A-C) represent the same plot from three different angles.
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geomorphology, but can often be both subjective and time-

consuming (Barbarella et al., 2019, 2021). Results from this paper

demonstrate the efficiency of the PCA k-means clustering method

as an objective alternative to expert morphology interpretation

and classification.

In the case of the GSL, 10 k-means clusters reduced to 8 classes

provided the best results based on localised knowledge of the study

area. Reclassifying outputs from an unsupervised k-means clustering in

this way, where clusters are grouped together based on predictor

statistics, has been done successfully prior to this study (Iwahashi

et al., 2018). Because of varying global seafloor morphological

complexity, 10 clusters may not be universally applicable for

morphological classification schemes. Classes should be selected with

care based on peer-reviewed definitions of morphological features and

knowledge of the local geological setting, which includes the

formational processes that the morphology has undergone in

the geologic past. In the GSL, much of the geology is based on the

glacial history of the region. Knowledge of the past ice cover in the area

and how it evolved explains many features, such as the north shore

submarine canyons and the size and orientation of the channels

(Loring and Nota, 1973).
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Submarine valleys and canyons are both characterised by elongated

bathymetric lows that slope upward on both sides to bathymetric highs

(Table 3). The valleys and canyons within the study area were often

associated with a ridge feature on either side, bordering the bathymetric

high of the valley/canyon (Figure 8 inset). The final version of the PCA

k-means model was unable to detect valleys and canyons, instead

classifying them as alternating slopes and ridges. However, submarine

canyons on the north shore of the GSL are well-described (Loring and

Nota, 1973; Normandeau et al., 2015) and are visible in bathymetry

raster images of the area. It is important to correctly identify these

features, as they can act as channels for sediment and nutrient transport

into deep water and are therefore crucial to benthic communities

(Kenchington et al., 2014). To correct for the inability of the model to

detect valleys and canyons, the valley classification from

r.geomorphons supplanted the classification from the k-means

model. One predictor variable that can provide the model with the

necessary information to detect the valley/canyon class is curvature.

Curvature can be used to describe concave or convex features and has

successfully been used in seafloor classification before (Mitchell and

Clarke, 1994; Ismail et al., 2015; Koop et al., 2021). It also has a strong

correlation to submarine canyonmorphology (Goff, 2001). Introducing
FIGURE 7

Boxplots indicating the distribution of each predictor variable’s values for each k-means cluster.
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curvature to the principal component analysis allowed for the k-means

clustering to detect valleys and canyons. However, when trialled here,

curvature also amplified data artefacts and classified many “valleys/

canyons” that were the size of a single cell scattered throughout the

entire GSL. For this reason, curvature was removed from the model.

The bathymetric data available for the GSL exists as a mosaic of

different data collection methods at different resolutions (GEBCO

Compilation Group, 2021) and a shortcoming of deriving curvature

from such a DEM is that compilation artefacts may propagate to

bathymetric derivatives (Iwahashi et al., 2018). The use of curvature

may work in an area where bathymetric data collection is more
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uniform and from a single source. In other parts of the global ocean,

seafloor curvaturemight also prove useful for classifyingmorphological

features defined as a bathymetric high surrounded by bathymetric lows,

such as cones, knolls, or mounds (Dove et al., 2020).
5 Conclusions

Sediment grain size models based on legacy substrate data were

developed here for the entire GSL by utilising a machine learning

framework. This enabled quantitative geospatial predictions of grain
FIGURE 9

Box plots depicting the distribution of grain size fractions for each morphological class.
FIGURE 8

Morphology of the GSL. Inset shows a section of the system of canyons and valleys that make up much of the north shore.
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size fractions for the first time in this region, including at areas of

scarce ground-truth data. Results from an objective and data-driven

morphological classification demonstrated apparent correspondence

with predicted sediment classes. Channels were predicted to

primarily comprise muds, while planes are likely composed of sand

or a sand/gravel mix. The use of r.geomorphons was effective at

supplanting the PCA k-means morphology classification where the

model failed to correctly identify submarine canyons and valleys. The

PCA k-means approach provided a fast and objective method to

classifying submarine morphology of the GSL, however, some expert

interpretation was still required to assign class labels and assess the

feasibility of the model output.
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