13 research outputs found

    Effects of interpersonal violence-related post-traumatic stress disorder (PTSD) on mother and child diurnal cortisol rhythm and cortisol reactivity to a laboratory stressor involving separation

    Get PDF
    Women who have experienced interpersonal violence (IPV) are at a higher risk to develop posttraumatic stress disorder (PTSD), with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and impaired social behavior. Previously, we had reported impaired maternal sensitivity and increased difficulty in identifying emotions (i.e. alexithymia) among IPV-PTSD mothers. One of the aims of the present study was to examine maternal IPV-PTSD salivary cortisol levels diurnally and reactive to their child’s distress in relation to maternal alexithymia. Given that mother-child interaction during infancy and early childhood has important long-term consequences on the stress response system, toddlers’ cortisol levels were assessed during the day and in response to a laboratory stressor. Mothers collected their own and their 12-48 month-old toddlers’ salivary samples at home three times: 30 min after waking up, between 2-3 pm and at bedtime. Moreover, mother-child dyads articipated in a 120-min laboratory session, consisting of 3 phases: baseline, stress situation (involving mother-child separation and exposure to novelty) and a 60-min regulation phase. Compared to non-PTSD controls, IPV-PTSD mothers -but not their toddlers-, had lower morning cortisol and higher bedtime cortisol levels. As expected, IPV-PTSD mothers and their children showed blunted cortisol reactivity to the laboratory stressor. Maternal cortisol levels were negatively correlated to difficulty in identifying emotions. Our data highlights PTSDIPV-related alterations in the HPA system and its relevance to maternal behavior. Toddlers of IPV-PTSD mothers also showed an altered pattern of cortisol reactivity to stress that potentially may predispose them to later psychological disorders

    The Gene Ontology resource: enriching a GOld mine

    No full text
    The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations

    Crowdsourcing biocuration: The Community Assessment of Community Annotation with Ontologies (CACAO).

    No full text
    Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills

    The Cellular Thioredoxin-1/Thioredoxin Reductase-1 Driven Oxidoreduction Represents a Chemotherapeutic Target for HIV-1 Entry Inhibition

    No full text
    Background The entry of HIV into its host cell is an interesting target for chemotherapeutic intervention in the life-cycle of the virus. During entry, reduction of disulfide bridges in the viral envelope glycoprotein gp120 by cellular oxidoreductases is crucial. The cellular thioredoxin reductase-1 plays an important role in this oxidoreduction process by recycling electrons to thioredoxin-1. Therefore, thioredoxin reductase-1 inhibitors may inhibit gp120 reduction during HIV-1 entry. In this present study, tellurium-based thioredoxin reductase-1 inhibitors were investigated as potential inhibitors of HIV entry. Results The organotellurium compounds inhibited HIV-1 and HIV-2 replication in cell culture at low micromolar concentrations by targeting an early event in the viral infection cycle. Time-of-drug-addition studies pointed to virus entry as the drug target, more specifically: the organotellurium compound TE-2 showed a profile similar or close to that of the fusion inhibitor enfuvirtide (T-20). Surface plasmon resonance-based interaction studies revealed that the compounds do not directly interact with the HIV envelope glycoproteins gp120 and gp41, nor with soluble CD4, but instead, dose-dependently bind to thioredoxin reductase-1. By inhibiting the thioredoxin-1/thioredoxin reductase-1-directed oxidoreduction of gp120, the organotellurium compounds prevent conformational changes in the viral glycoprotein which are necessary during viral entry. Conclusion Our findings revealed that thioredoxin-1/thioredoxin reductase-1 acts as a cellular target for the inhibition of HIV entry
    corecore