9 research outputs found

    Collisional depolarization of NO(A) by He and Ar studied by quantum beat spectroscopy

    Get PDF
    Zeeman and hyperfine quantum beat spectroscopies have been used to measure the total elastic plus inelastic angular momentum depolarization rate constants at 300 K for NO (A 2 σ+) in the presence of He and Ar. In the case of Zeeman quantum beats it is shown how the applied magnetic field can be used to allow measurement of depolarization rates for both angular momentum orientation and alignment. For the systems studied here, collisional loss of alignment is more efficient than loss of orientation. In the case of NO (A) with He, and to a lesser extent NO (A) with Ar, collisional depolarization is found to be a relatively minor process compared to rotational energy transfer, reflecting the very weak long-range forces in these systems. Detailed comparisons are made with quantum mechanical and quasiclassical trajectory calculations performed on recently developed potential energy surfaces. For both systems, the agreement between the calculated depolarization cross sections and the present measurements is found to be very good, suggesting that it is reasonable to consider the NO (A) bond as frozen during these angular momentum transferring collisions. A combination of kinematic effects and differences in the potential energy surfaces are shown to be responsible for the differences observed in depolarization cross section with He and Ar as a collider. © 2009 American Institute of Physics

    Defining Kawasaki disease and pediatric inflammatory multisystem syndrome-temporally associated to SARS-CoV-2 infection during SARS-CoV-2 epidemic in Italy: results from a national, multicenter survey

    Get PDF
    Background: There is mounting evidence on the existence of a Pediatric Inflammatory Multisystem Syndrome-temporally associated to SARS-CoV-2 infection (PIMS-TS), sharing similarities with Kawasaki Disease (KD). The main outcome of the study were to better characterize the clinical features and the treatment response of PIMS-TS and to explore its relationship with KD determining whether KD and PIMS are two distinct entities. Methods: The Rheumatology Study Group of the Italian Pediatric Society launched a survey to enroll patients diagnosed with KD (Kawasaki Disease Group - KDG) or KD-like (Kawacovid Group - KCG) disease between February 1st 2020, and May 31st 2020. Demographic, clinical, laboratory data, treatment information, and patients' outcome were collected in an online anonymized database (RedCAP®). Relationship between clinical presentation and SARS-CoV-2 infection was also taken into account. Moreover, clinical characteristics of KDG during SARS-CoV-2 epidemic (KDG-CoV2) were compared to Kawasaki Disease patients (KDG-Historical) seen in three different Italian tertiary pediatric hospitals (Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste; AOU Meyer, Florence; IRCCS Istituto Giannina Gaslini, Genoa) from January 1st 2000 to December 31st 2019. Chi square test or exact Fisher test and non-parametric Wilcoxon Mann-Whitney test were used to study differences between two groups. Results: One-hundred-forty-nine cases were enrolled, (96 KDG and 53 KCG). KCG children were significantly older and presented more frequently from gastrointestinal and respiratory involvement. Cardiac involvement was more common in KCG, with 60,4% of patients with myocarditis. 37,8% of patients among KCG presented hypotension/non-cardiogenic shock. Coronary artery abnormalities (CAA) were more common in the KDG. The risk of ICU admission were higher in KCG. Lymphopenia, higher CRP levels, elevated ferritin and troponin-T characterized KCG. KDG received more frequently immunoglobulins (IVIG) and acetylsalicylic acid (ASA) (81,3% vs 66%; p = 0.04 and 71,9% vs 43,4%; p = 0.001 respectively) as KCG more often received glucocorticoids (56,6% vs 14,6%; p < 0.0001). SARS-CoV-2 assay more often resulted positive in KCG than in KDG (75,5% vs 20%; p < 0.0001). Short-term follow data showed minor complications. Comparing KDG with a KD-Historical Italian cohort (598 patients), no statistical difference was found in terms of clinical manifestations and laboratory data. Conclusion: Our study suggests that SARS-CoV-2 infection might determine two distinct inflammatory diseases in children: KD and PIMS-TS. Older age at onset and clinical peculiarities like the occurrence of myocarditis characterize this multi-inflammatory syndrome. Our patients had an optimal response to treatments and a good outcome, with few complications and no deaths

    A global reference for human genetic variation

    Get PDF
    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.We thank the many people who were generous with contributing their samples to the project: the African Caribbean in Barbados; Bengali in Bangladesh; British in England and Scotland; Chinese Dai in Xishuangbanna, China; Colombians in Medellin, Colombia; Esan in Nigeria; Finnish in Finland; Gambian in Western Division – Mandinka; Gujarati Indians in Houston, Texas, USA; Han Chinese in Beijing, China; Iberian populations in Spain; Indian Telugu in the UK; Japanese in Tokyo, Japan; Kinh in Ho Chi Minh City, Vietnam; Luhya in Webuye, Kenya; Mende in Sierra Leone; people with African ancestry in the southwest USA; people with Mexican ancestry in Los Angeles, California, USA; Peruvians in Lima, Peru; Puerto Ricans in Puerto Rico; Punjabi in Lahore, Pakistan; southern Han Chinese; Sri Lankan Tamil in the UK; Toscani in Italia; Utah residents (CEPH) with northern and western European ancestry; and Yoruba in Ibadan, Nigeria. Many thanks to the people who contributed to this project: P. Maul, T. Maul, and C. Foster; Z. Chong, X. Fan, W. Zhou, and T. Chen; N. Sengamalay, S. Ott, L. Sadzewicz, J. Liu, and L. Tallon; L. Merson; O. Folarin, D. Asogun, O. Ikpwonmosa, E. Philomena, G. Akpede, S. Okhobgenin, and O. Omoniwa; the staff of the Institute of Lassa Fever Research and Control (ILFRC), Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria; A. Schlattl and T. Zichner; S. Lewis, E. Appelbaum, and L. Fulton; A. Yurovsky and I. Padioleau; N. Kaelin and F. Laplace; E. Drury and H. Arbery; A. Naranjo, M. Victoria Parra, and C. Duque; S. Däkel, B. Lenz, and S. Schrinner; S. Bumpstead; and C. Fletcher-Hoppe. Funding for this work was from the Wellcome Trust Core Award 090532/Z/09/Z and Senior Investigator Award 095552/Z/11/Z (P.D.), and grants WT098051 (R.D.), WT095908 and WT109497 (P.F.), WT086084/Z/08/Z and WT100956/Z/13/Z (G.M.), WT097307 (W.K.), WT0855322/Z/08/Z (R.L.), WT090770/Z/09/Z (D.K.), the Wellcome Trust Major Overseas program in Vietnam grant 089276/Z.09/Z (S.D.), the Medical Research Council UK grant G0801823 (J.L.M.), the UK Biotechnology and Biological Sciences Research Council grants BB/I02593X/1 (G.M.) and BB/I021213/1 (A.R.L.), the British Heart Foundation (C.A.A.), the Monument Trust (J.H.), the European Molecular Biology Laboratory (P.F.), the European Research Council grant 617306 (J.L.M.), the Chinese 863 Program 2012AA02A201, the National Basic Research program of China 973 program no. 2011CB809201, 2011CB809202 and 2011CB809203, Natural Science Foundation of China 31161130357, the Shenzhen Municipal Government of China grant ZYC201105170397A (J.W.), the Canadian Institutes of Health Research Operating grant 136855 and Canada Research Chair (S.G.), Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research (M.K.D.), a Le Fonds de Recherche duQuébec-Santé (FRQS) research fellowship (A.H.), Genome Quebec (P.A.), the Ontario Ministry of Research and Innovation – Ontario Institute for Cancer Research Investigator Award (P.A., J.S.), the Quebec Ministry of Economic Development, Innovation, and Exports grant PSR-SIIRI-195 (P.A.), the German Federal Ministry of Education and Research (BMBF) grants 0315428A and 01GS08201 (R.H.), the Max Planck Society (H.L., G.M., R.S.), BMBF-EPITREAT grant 0316190A (R.H., M.L.), the German Research Foundation (Deutsche Forschungsgemeinschaft) Emmy Noether Grant KO4037/1-1 (J.O.K.), the Beatriu de Pinos Program grants 2006 BP-A 10144 and 2009 BP-B 00274 (M.V.), the Spanish National Institute for Health Research grant PRB2 IPT13/0001-ISCIII-SGEFI/FEDER (A.O.), Ewha Womans University (C.L.), the Japan Society for the Promotion of Science Fellowship number PE13075 (N.P.), the Louis Jeantet Foundation (E.T.D.), the Marie Curie Actions Career Integration grant 303772 (C.A.), the Swiss National Science Foundation 31003A_130342 and NCCR “Frontiers in Genetics” (E.T.D.), the University of Geneva (E.T.D., T.L., G.M.), the US National Institutes of Health National Center for Biotechnology Information (S.S.) and grants U54HG3067 (E.S.L.), U54HG3273 and U01HG5211 (R.A.G.), U54HG3079 (R.K.W., E.R.M.), R01HG2898 (S.E.D.), R01HG2385 (E.E.E.), RC2HG5552 and U01HG6513 (G.T.M., G.R.A.), U01HG5214 (A.C.), U01HG5715 (C.D.B.), U01HG5718 (M.G.), U01HG5728 (Y.X.F.), U41HG7635 (R.K.W., E.E.E., P.H.S.), U41HG7497 (C.L., M.A.B., K.C., L.D., E.E.E., M.G., J.O.K., G.T.M., S.A.M., R.E.M., J.L.S., K.Y.), R01HG4960 and R01HG5701 (B.L.B.), R01HG5214 (G.A.), R01HG6855 (S.M.), R01HG7068 (R.E.M.), R01HG7644 (R.D.H.), DP2OD6514 (P.S.), DP5OD9154 (J.K.), R01CA166661 (S.E.D.), R01CA172652 (K.C.), P01GM99568 (S.R.B.), R01GM59290 (L.B.J., M.A.B.), R01GM104390 (L.B.J., M.Y.Y.), T32GM7790 (C.D.B., A.R.M.), P01GM99568 (S.R.B.), R01HL87699 and R01HL104608 (K.C.B.), T32HL94284 (J.L.R.F.), and contracts HHSN268201100040C (A.M.R.) and HHSN272201000025C (P.S.), Harvard Medical School Eleanor and Miles Shore Fellowship (K.L.), Lundbeck Foundation Grant R170-2014-1039 (K.L.), NIJ Grant 2014-DN-BX-K089 (Y.E.), the Mary Beryl Patch Turnbull Scholar Program (K.C.B.), NSF Graduate Research Fellowship DGE-1147470 (G.D.P.), the Simons Foundation SFARI award SF51 (M.W.), and a Sloan Foundation Fellowship (R.D.H.). E.E.E. is an investigator of the Howard Hughes Medical Institute

    Screening premorbid metabolic syndrome in community pharmacies: a cross-sectional descriptive study

    Get PDF
    Background: Premorbid metabolic syndrome (pre-MetS) is a cluster of cardiometabolic risk factors characterised by central obesity, elevated fasting glucose, atherogenic dyslipidaemia and hypertension without established cardiovascular disease or diabetes. Community pharmacies are in an excellent position to develop screening programmes because of their direct contact with the population. The main aim of the study was to determine the prevalence of pre-MetS in people who visited community pharmacies for measurement of any of its five risk factors to detect the presence of other risk factors. The secondary aims were to study the presence of other cardiovascular risk factors and determine patients" cardiovascular risk. Methods: Cross-sectional, descriptive, multicentre study. Patients meeting selection criteria aged between 18 and 65 years who visited participating community pharmacies to check any of five pre-MetS diagnostic factors were included. The study involved 23 community pharmacies in Catalonia (Spain). Detection criteria for pre-MetS were based on the WHO proposal following IDF and AHA/NHBI consensus. Cardiovascular risk (CVR) was calculated by Regicor and Score methods. Other variables studied were smoking habit, physical activity, body mass index (BMI), and pharmacological treatment of dyslipidemia and hypertension. The data were collected and analysed with the SPSS programme. Comparisons of variables were carried out using the Student"s T-test, Chi-Squared test or ANOVA test. Level of significance was 5% (0.05). Results: The overall prevalence of pre-MetS was 21.9% [95% CI 18.7-25.2]. It was more prevalent in men, 25.5% [95% CI 22.1-28.9], than in women, 18.6% [95% CI 15.5-21.7], and distribution increased with age. The most common risk factors were high blood pressure and abdominal obesity. About 70% of people with pre-MetS were sedentary and over 85% had a BMI ≥25 Kg/m2 . Some 22.4% had two metabolic criteria and 27.2% of patients with pre-MetS had no previous diagnosis. Conclusions: The prevalence of pre-MetS in our study (21.9%) was similar to that found in other studies carried out in Primary Care in Spain. The results of this study confirm emergent cardiometabolic risk factors such as hypertension, obesity and physical inactivity. Our study highlights the strategic role of the community pharmacy in the detection of pre-MetS in the apparently healthy population

    An integrated map of genetic variation from 1,092 human genomes

    Get PDF
    By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations

    Visual Disorders

    No full text
    corecore