20 research outputs found

    Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix

    Full text link
    We consider a symmetric matrix, the entries of which depend linearly on some parameters. The domains of the parameters are compact real intervals. We investigate the problem of checking whether for each (or some) setting of the parameters, the matrix is positive definite (or positive semidefinite). We state a characterization in the form of equivalent conditions, and also propose some computationally cheap sufficient\,/\,necessary conditions. Our results extend the classical results on positive (semi-)definiteness of interval matrices. They may be useful for checking convexity or non-convexity in global optimization methods based on branch and bound framework and using interval techniques

    Variability of RNA quality extracted from biofilms of foodborne pathogens using different kits impacts mRNA quantification by qPCR

    Get PDF
    The biofilm formation by foodborne pathogens is known to increase the problem related with surface disinfection procedure in the food processing environment and consequent transmission of these pathogens into the population. Messenger RNA has been increasingly used to understand the action and the consequences of disinfectants in the virulence on such biofilms. RNA quality is an important requirement for any RNA-based analysis since the quality can impair the mRNA quantification. Therefore, we evaluated five different RNA extraction kits using biofilms of the foodborne pathogens Listeria monocytogenes, Escherichia coli, and Salmonella enterica. The five kits yielded RNA with different quantities and qualities. While for E. coli the variability of RNA quality did not affect the quantification of mRNA, the same was not true for L. monocytogenes or S. enterica. Therefore, our results indicate that not all kits are suitable for RNA extraction from bacterial biofilms, and thus, the selection of RNA extraction kit is crucial to obtain accurate and meaningful mRNA quantification.AF and JCB acknowledge the financial support of individual grants SFRH/BD/62359/2009 and SFRH/BD/66250/2009, respectively. The authors acknowledge the gift of bacterial strains to Joana Azeredo and Maria Olivia Pereira.

    Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH

    Get PDF
    Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3040

    Optimizing a qPCR Gene Expression Quantification Assay for S. epidermidis Biofilms: A Comparison between Commercial Kits and a Customized Protocol

    Get PDF
    Staphylococcus epidermidis biofilm-related infections are a current concern within the medical community due to their high incidence and prevalence, particularly in patients with indwelling medical devices. Biofilm gene expression analysis by quantitative real-time PCR (qPCR) has been increasingly used to understand the role of biofilm formation in the pathogenesis of S. epidermidis infections. However, depending on the RNA extraction procedure, and cDNA synthesis and qPCR master mixes used, gene expression quantification can be suboptimal. We recently showed that some RNA extraction kits are not suitable for S. epidermidis biofilms, due to sample composition, in particular the presence of the extracellular matrix. In this work, we describe a custom RNA extraction assay followed by the evaluation of gene expression using different commercial reverse transcriptase kits and qPCR master mixes. Our custom RNA extraction assay was able to produce good quality RNA with reproducible gene expression quantification, reducing the time and the costs associated. We also tested the effect of reducing cDNA and qPCR reaction volumes and, in most of the cases tested, no significant differences were found. Finally, we titered the SYBR Green I concentrations in standard PCR master mixes and compared the normalized expression of the genes icaA, bhp, aap, psmβ1 and agrB using 4 distinct biofilm forming S. epidermidis strains to the results obtained with commercially available kits. The overall results demonstrated that despite some statistically, but not biologically significant differences observed, the customized qPCR protocol resulted in the same gene expression trend presented by the commercially available kits used

    Carrier-free cellular uptake and the gene-silencing activity of the lipophilic siRNAs is strongly affected by the length of the linker between siRNA and lipophilic group

    Get PDF
    The conjugation of siRNA to molecules, which can be internalized into the cell via natural transport mechanisms, can result in the enhancement of siRNA cellular uptake. Herein, the carrier-free cellular uptake of nuclease-resistant anti-MDR1 siRNA equipped with lipophilic residues (cholesterol, lithocholic acid, oleyl alcohol and litocholic acid oleylamide) attached to the 5′-end of the sense strand via oligomethylene linker of various length was investigated. A convenient combination of H-phosphonate and phosphoramidite methods was developed for the synthesis of 5′-lipophilic conjugates of siRNAs. It was found that lipophilic siRNA are able to effectively penetrate into HEK293, HepG2 and KB-8-5 cancer cells when used in a micromolar concentration range. The efficiency of the uptake is dependent upon the type of lipophilic moiety, the length of the linker between the moiety and the siRNA and cell type. Among all the conjugates tested, the cholesterol-conjugated siRNAs with linkers containing from 6 to 10 carbon atoms demonstrate the optimal uptake and gene silencing properties: the shortening of the linker reduces the efficiency of the cellular uptake of siRNA conjugates, whereas the lengthening of the linker facilitates the uptake but retards the gene silencing effect and decreases the efficiency of the silencing
    corecore