857 research outputs found

    Critical evaluation of proteomic protocols for passion fruit (Passiflora edulis Sims) leaves, a crop with juice market benefits

    Get PDF
    Passion fruit grows practically all over Brazilian territory; its production is largely destined to juice industry and expanding to overseas markets. The suitability of four protein extraction protocols for plant proteome was  investigated to determine the best choice for studies concerning passion fruit leaf proteins. Trichloroacetic acid (TCA)/acetone extraction; isoelectric  focusing (IEF) buffer extraction; phenol (Phe) extraction and Phe-SDS extraction were tested. The Phe method produced the best results, showing higher reproducibility of resolved protein spots and clearer 2D gel  background staining. In comparison, the Phe-SDS method presented fewer spots and lower reproducibility. The TCA/acetone method produced the fewest identifiable spots and the IEF buffer produced the poorest results,displaying fewer reproducibly detected spots, more vertical streaks and darker 2D staining. Selected spots, obtained with Phe method, were identified by spectrometric analysis (MALDI-TOF-TOF) to exemplify the viability to perform more comprehensive proteomic studies with passion fruit leaves and, therefore increase information about stress-related and developmental responses in this fruit crop.Key words: Passion fruit, proteomic, protein extraction, juice industry

    Wide spectrum of NR5A1-related phenotypes in 46,XY and 46,XX individuals

    Get PDF
    Steroidogenic factor 1 (NR5A1, SF-1, Ad4BP) is a transcriptional regulator of genes involved in adrenal and gonadal development and function. Mutations in NR5A1 have been among the most frequently identified genetic causes of gonadal development disorders and are associated with a wide phenotypic spectrum. In 46,XY individuals, NR5A1-related phenotypes may range from disorders of sex development (DSD) to oligo/azoospermia, and in 46,XX individuals, from 46,XX ovotesticular and testicular DSD to primary ovarian insufficiency (POI). The most common 46,XY phenotype is atypical or female external genitalia with clitoromegaly, palpable gonads, and absence of Müllerian derivatives. Notably, an undervirilized external genitalia is frequently seen at birth, while spontaneous virilization may occur later, at puberty. In 46,XX individuals, NR5A1 mutations are a rare genetic cause of POI, manifesting as primary or secondary amenorrhea, infertility, hypoestrogenism, and elevated gonadotropin levels. Mothers and sisters of 46,XY DSD patients carrying heterozygous NR5A1 mutations may develop POI, and therefore require appropriate counseling. Moreover, the recurrent heterozygous p.Arg92Trp NR5A1 mutation is associated with variable degrees of testis development in 46,XX patients. A clear genotype-phenotype correlation is not seen in patients bearing NR5A1 mutations, suggesting that genetic modifiers, such as pathogenic variants in other testis/ovarian-determining genes, may contribute to the phenotypic expression. Here, we review the published literature on NR5A1-related disease, and discuss our findings at a single tertiary center in Brazil, including ten novel NR5A1 mutations identified in 46,XY DSD patients. The ever-expanding phenotypic range associated with NR5A1 variants in XY and XX individuals confirms its pivotal role in reproductive biology, and should alert clinicians to the possibility of NR5A1 defects in a variety of phenotypes presenting with gonadal dysfunction

    A Case Based Reasoning View of School Dropout Screening

    Get PDF
    The cause for student dropout is often termed as the antecedent of failure, since it stands for a key event, which leads to dropout. Indeed, school dropout is well thought out as one of the major worries of our times. It is a multi-layered and complex phenomenon, with many triggers, namely academic striving and failure, poor attendance, retention, disengagement from school or even socio-economic motives. School dropout represents economic and social losses to the individual, family and community. However, it may be prevented if the educational actors hold pro-active strategies (e.g., taking into account similar past experiences). Indeed, this work will start with the development of a decision support system to assess school dropout, centered on a formal framework based on Logic Programming for Knowledge Representation, complemented with a Case-Based Reasoning approach to problem solving, which caters for the handling of incomplete, unknown, or even contradictory information, i.e., it improves the analysis enactment of the retrieving cases process

    Immunomodulatory Protective Effects of Rb9 Cyclic-Peptide in a Metastatic Melanoma Setting and the Involvement of Dendritic Cells

    Get PDF
    The cyclic VHCDR3-derived peptide (Rb9) from RebMab200 antibody, directed to a NaPi2B phosphate-transport protein, displayed anti-metastatic melanoma activity at 50-300 mu g intraperitoneally injected in syngeneic mice. Immune deficient mice failed to respond to the peptide protective effect. Rb9 induced increased CD8+ T and low Foxp3+ T cell infiltration in lung metastases and high IFN-gamma and low TGF-beta in lymphoid organs. The peptide co-localized with F-actin and a nuclear site in dendritic cells and specifically bound to MIF and CD74 in a dot-blot setting. Murine bone-marrow dendritic cells preincubated with Rb9 for 6 h were treated with MIF for short time periods. The modulated responses showed stimulation of CD74 and inhibition of pPI3K, pERK, and pNF-kappa B as compared to MIF alone. Rb9 in a melanoma-conditioned medium, stimulated the M1 type conversion in bone marrow-macrophages. Functional aspects of Rb9 in vivo were studied in therapeutic and prophylactic protocols using a melanoma metastatic model. In both protocols Rb9 exhibited a marked anti-melanoma protection. Human dendritic cells were also investigated showing increased expression of surface markers in response to Rb9 incubation. Rb9 either stimulated or slightly inhibited moDCs submitted to inhibitory (TGF-beta and IL-10) or activating (LPS) conditions, respectively. Lymphocyte proliferation was obtained with moDCs stimulated by Rb9 and tumor cell lysate. In moDCs from cancer patients Rb9 exerted immunomodulatory activities depending on their functional status. The peptide may inhibit over-stimulated cells, stimulate poorly activated and suppressed cells, or cause instead, little phenotypic and functional alterations. Recently, the interaction MIF-CD74 has been associated to PD-L1 expression and IFN-gamma, suggesting a target for melanoma treatment. The effects described for Rb9 and the protection against metastatic melanoma may suggest the possibility of a peptide reagent that could be relevant when associated to modern immunotherapeutic procedures

    The influence of semantic and phonological factors on syntactic decisions: An event-related brain potential study

    Get PDF
    During language production and comprehension, information about a word's syntactic properties is sometimes needed. While the decision about the grammatical gender of a word requires access to syntactic knowledge, it has also been hypothesized that semantic (i.e., biological gender) or phonological information (i.e., sound regularities) may influence this decision. Event-related potentials (ERPs) were measured while native speakers of German processed written words that were or were not semantically and/or phonologically marked for gender. Behavioral and ERP results showed that participants were faster in making a gender decision when words were semantically and/or phonologically gender marked than when this was not the case, although the phonological effects were less clear. In conclusion, our data provide evidence that even though participants performed a grammatical gender decision, this task can be influenced by semantic and phonological factors

    Evaluation of high-throughput genomic assays for the Fc gamma receptor locus

    Get PDF
    Cancer immunotherapy has been revolutionised by the use of monoclonal antibodies (mAb) that function through their interaction with Fc gamma receptors (FcγRs). The low-affinity FcγR genes are highly homologous, map to a complex locus at 1p23 and harbour single nucleotide polymorphisms (SNPs) and copy number variation (CNV) that can impact on receptor function and response to therapeutic mAbs. This complexity can hinder accurate characterisation of the locus. We therefore evaluated and optimised a suite of assays for the genomic analysis of the FcγR locus amenable to peripheral blood mononuclear cells and formalin-fixed paraffin-embedded (FFPE) material that can be employed in a high-throughput manner. Assessment of TaqMan genotyping for FCGR2A-131H/R, FCGR3A-158F/V and FCGR2B-232I/T SNPs demonstrated the need for additional methods to discriminate genotypes for the FCGR3A-158F/V and FCGR2B-232I/T SNPs due to sequence homology and CNV in the region. A multiplex ligation-dependent probe amplification assay provided high quality SNP and CNV data in PBMC cases, but there was greater data variability in FFPE material in a manner that was predicted by the BIOMED-2 multiplex PCR protocol. In conclusion, we have evaluated a suite of assays for the genomic analysis of the FcγR locus that are scalable for application in large clinical trials of mAb therapy. These assays will ultimately help establish the importance of FcγR genetics in predicting response to antibody therapeutics
    corecore