971 research outputs found

    Shape-induced force fields in optical trapping

    Get PDF
    Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines

    DOSCATs: Double standards for protein quantification

    Get PDF
    The two most common techniques for absolute protein quantification are based on either mass spectrometry (MS) or on immunochemical techniques, such as western blotting (WB). Western blotting is most often used for protein identification or relative quantification, but can also be deployed for absolute quantification if appropriate calibration standards are used. MS based techniques offer superior data quality and reproducibility, but WB offers greater sensitivity and accessibility to most researchers. It would be advantageous to apply both techniques for orthogonal quantification, but workflows rarely overlap. We describe DOSCATs (DOuble Standard conCATamers), novel calibration standards based on QconCAT technology, to unite these platforms. DOSCATs combine a series of epitope sequences concatenated with tryptic peptides in a single artificial protein to create internal tryptic peptide standards for MS as well as an intact protein bearing multiple linear epitopes. A DOSCAT protein was designed and constructed to quantify five proteins of the NF-κB pathway. For three target proteins, protein fold change and absolute copy per cell values measured by MS and WB were in excellent agreement. This demonstrates that DOSCATs can be used as multiplexed, dual purpose standards, readily deployed in a single workflow, supporting seamless quantitative transition from MS to WB

    Tolerability of NGX-4010, a capsaicin 8% dermal patch, following pretreatment with lidocaine 2.5%/prilocaine 2.5% cream in patients with post-herpetic neuralgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Post-herpetic neuralgia (PHN) is a common type of neuropathic pain that can severely affect quality of life. NGX-4010, a capsaicin 8% dermal patch, is a localized treatment that can provide patients with significant pain relief for up to 3 months following a single 60-minute application. The NGX-4010 application can be associated with application-site pain and in previous clinical trials pretreatment with a topical 4% lidocaine anesthetic was used to enhance tolerability. The aim of the current investigation was to evaluate tolerability of NGX-4010 after pretreatment with lidocaine 2.5%/prilocaine 2.5% anesthetic cream.</p> <p>Methods</p> <p>Twenty-four patients with PHN were pretreated with lidocaine 2.5%/prilocaine 2.5% cream for 60 minutes before receiving a single 60-minute application of NGX-4010. Tolerability was assessed by measuring patch application duration, the proportion of patients completing over 90% of the intended treatment duration, application site-related pain using the Numeric Pain Rating Scale (NPRS), and analgesic medication use to relieve such pain. Safety was assessed by monitoring adverse events (AEs) and dermal irritation using dermal assessment scores.</p> <p>Results</p> <p>The mean treatment duration of NGX-4010 was 60.2 minutes and all patients completed over 90% of the intended patch application duration. Pain during application was transient. A maximum mean change in NPRS score of +3.0 was observed at 55 minutes post-patch application; pain scores gradually declined to near pre-anesthetic levels (+0.71) within 85 minutes of patch removal. Half of the patients received analgesic medication on the day of treatment; by Day 7, no patients required medication. The most common AEs were application site-related pain, erythema, edema, and pruritus. All patients experienced mild dermal irritation 5 minutes after patch removal, which subsequently decreased; at Day 7, no irritation was evident. The maximum recorded dermal assessment score was 2.</p> <p>Conclusion</p> <p>NGX-4010 was well tolerated following pretreatment with lidocaine 2.5%/prilocaine 2.5% cream in patients with PHN. The tolerability of the patch application appeared comparable with that seen in other studies that used 4% lidocaine cream as the pretreatment anesthetic. This study is registered at <url>http://www.clinicaltrials.gov</url> as number <a href="http://www.clinicaltrials.gov/ct2/show/NCT00916942">NCT00916942</a>.</p

    The skull of Epidolops ameghinoi from the early Eocene Itaboraí fauna, southeastern Brazil, and the affinities of the extinct marsupialiform order Polydolopimorphia

    Get PDF
    The skull of the polydolopimorphian marsupialiform Epidolops ameghinoi is described in detail for the first time, based on a single well-preserved cranium and associated left and right dentaries plus additional craniodental fragments, all from the early Eocene (53-50 million year old) Itaboraí fauna in southeastern Brazil. Notable craniodental features of E. ameghinoi include absence of a masseteric process, very small maxillopalatine fenestrae, a prominent pterygoid fossa enclosed laterally by a prominent ectopterygoid crest, an absent or tiny transverse canal foramen, a simple, planar glenoid fossa, and a postglenoid foramen that is immediately posterior to the postglenoid process. Most strikingly, the floor of the hypotympanic sinus was apparently unossified, a feature found in several stem marsupials but absent in all known crown marsupials. "Type II" marsupialiform petrosals previously described from Itaboraí plausibly belong to E. ameghinoi; in published phylogenetic analyses, these petrosals fell outside (crown-clade) Marsupialia. "IMG VII" tarsals previously referred to E. ameghinoi do not share obvious synapomorphies with any crown marsupial clade, nor do they resemble those of the only other putative polydolopimorphians represented by tarsal remains, namely the argyrolagids. Most studies have placed Polydolopimorphia within Marsupialia, related to either Paucituberculata, or to Microbiotheria and Diprotodontia. However, diprotodonty almost certainly evolved independently in polydolopimorphians, paucituberculatans and diprotodontians, and Epidolops does not share obvious synapomorphies with any marsupial order. Epidolops is dentally specialized, but several morphological features appear to be more plesiomorphic than any crown marsupial. It seems likely Epidolops that falls outside Marsupialia, as do morphologically similar forms such as Bonapartherium and polydolopids. Argyrolagids differ markedly in their known morphology from Epidolops but share some potential apomorphies with paucituberculatans. It is proposed that Polydolopimorphia as currently recognised is polyphyletic, and that argyrolagids (and possibly other taxa currently included in Argyrolagoidea, such as groeberiids and patagoniids) are members of Paucituberculata. This hypothesis is supported by Bayesian non-clock phylogenetic analyses of a total evidence matrix comprising DNA sequence data from five nuclear protein-coding genes, indels, retroposon insertions and morphological characters: Epidolops falls outside Marsupialia, whereas argyrolagids form a clade with the paucituberculatans Caenolestes and Palaeothentes, regardless of whether the Type II petrosals and IMG VII tarsals are used to score characters for Epidolops or not. There is no clear evidence for the presence of crown marsupials at Itaboraí, and it is possible that the origin and early evolution of Marsupialia was restricted to the "Austral Kingdom" (southern South America, Antarctica, and Australia)

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Evidence for Widespread Genomic Methylation in the Migratory Locust, Locusta migratoria (Orthoptera: Acrididae)

    Get PDF
    The importance of DNA methylation in mammalian and plant systems is well established. In recent years there has been renewed interest in DNA methylation in insects. Accumulating evidence, both from mammals and insects, points towards an emerging role for DNA methylation in the regulation of phenotypic plasticity. The migratory locust (Locusta migratoria) is a model organism for the study of phenotypic plasticity. Despite this, there is little information available about the degree to which the genome is methylated in this species and genes encoding methylation machinery have not been previously identified. We therefore undertook an initial investigation to establish the presence of a functional DNA methylation system in L. migratoria. We found that the migratory locust possesses genes that putatively encode methylation machinery (DNA methyltransferases and a methyl-binding domain protein) and exhibits genomic methylation, some of which appears to be localised to repetitive regions of the genome. We have also identified a distinct group of genes within the L. migratoria genome that appear to have been historically methylated and show some possible functional differentiation. These results will facilitate more detailed research into the functional significance of DNA methylation in locusts

    Supporting adherence for people starting a new medication for a long-term condition through community pharmacies: a pragmatic randomised controlled trial of the New Medicine Service

    Get PDF
    Objective: To examine the effectiveness of the New Medicine Service (NMS), a national community pharmacy service to support medicines-taking in people starting a new medicine for a long-term condition, compared with normal practice. Methods: Pragmatic patient-level parallel randomised controlled trial, in 46 community pharmacies in England. Patients 1:1 block randomisation stratified by drug/disease group within each pharmacy. 504 participants (NMS: 251) aged 14 years and over, identified in the pharmacy on presentation of a prescription for asthma/chronic obstructive pulmonary disease, hypertension, type 2 diabetes or an anticoagulant/antiplatelet agent. NMS intervention: One consultation 7–14 days after presentation of prescription followed by another 14–21 days thereafter to identify problems with treatment and provide support if needed. Controls received normal practice. Adherence, defined as missing no doses without the advice of a medical professional in the previous 7 days, was assessed through patient self-report at 10 weeks. Intention-to-treat analysis was employed, with outcome adjusted for recruiting pharmacy, NMS disease category, age, sex and medication count. Cost to the National Health Service (NHS) was collected. Results: At 10 weeks, 53 patients had withdrawn and 443 (85%) patients were contacted successfully by telephone. In the unadjusted analysis of 378 patients still taking the initial medicine, 61% (95% CI 54% to 67%) and 71% (95% CI 64% to 77%) patients were adherent in the normal practice and NMS arms, respectively (p=0.04 for difference). In the adjusted intention-to-treat analysis, the OR for increased adherence was 1.67 (95% CI 1.06 to 2.62; p=0.027) in favour of the NMS arm. There was a general trend to reduced NHS costs, albeit, statistically non-significant, for the NMS intervention: saving £21 (95% CI −£59 to £100, p=0.128) per patient. Conclusions: The NMS significantly increased the proportion of patients adhering to their new medicine by about 10%, compared with normal practice

    The use of Open Reading frame ESTs (ORESTES) for analysis of the honey bee transcriptome

    Get PDF
    BACKGROUND: The ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES) strategy to generate profiles for the life cycle of Apis mellifera workers. RESULTS: Of the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41%) represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria), and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52%) did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22%) should represent Apis-specific genes. CONCLUSIONS: The versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes
    corecore