102 research outputs found

    Generation of vortices and observation of Quantum Turbulence in an oscillating Bose-Einstein Condensate

    Full text link
    We report on the experimental observation of vortex formation and production of tangled vortex distribution in an atomic BEC of Rb-87 atoms submitted to an external oscillatory perturbation. The oscillatory perturbations start by exciting quadrupolar and scissors modes of the condensate. Then regular vortices are observed finally evolving to a vortex tangle configuration. The vortex tangle is a signature of the presence of a turbulent regime in the cloud. We also show that this turbulent cloud has suppression of the aspect ratio inversion typically observed in quantum degenerate bosonic gases during free expansion.Comment: to appear in JLTP - QFS 200

    f(R,L_m) gravity

    Get PDF
    We generalize the f(R)f(R) type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar RR and of the matter Lagrangian LmL_m. We obtain the gravitational field equations in the metric formalism, as well as the equations of motion for test particles, which follow from the covariant divergence of the energy-momentum tensor. The equations of motion for test particles can also be derived from a variational principle in the particular case in which the Lagrangian density of the matter is an arbitrary function of the energy-density of the matter only. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equation of motion is also considered, and a procedure for obtaining the energy-momentum tensor of the matter is presented. The gravitational field equations and the equations of motion for a particular model in which the action of the gravitational field has an exponential dependence on the standard general relativistic Hilbert--Einstein Lagrange density are also derived.Comment: 6 pages, no figures; minor modifications, references added; accepted for publication in EPJ

    Proceedings from the 2nd European Clinical Consensus Conference for device-based therapies for hypertension: state of the art and considerations for the future.

    Get PDF
    The interest in RDN for hypertension has fluctuated recently, with a flurry of initial enthusiasm followed by sudden loss of interest by researchers and device manufacturers, with an almost as sudden resurgence in clinical trials activity and device innovation more recently. There is widespread consensus that this therapeutic strategy can be effective, at least for some of the technologies available. Major uncertainties remain as to the clinical role of RDN, and whether any of the emerging technologies such as AV-anastomosis formation, carotid body ablation, carotid bulb expansion, or baroreflex stimulation will have a future as effective treatment options in patients with hypertension. In our first consensus report in 2015, the European Expert Group pointed to the major unmet need of standardization of measurements, trial design and procedural performance.6 With the large number of different technologies currently in the pipeline, this need has even increased. Only through high-quality, collaborative research and openness to new methods for recruitment, patient selection, and assessment of outcomes will it be possible to establish incontrovertibly whether device therapies for hypertension are effective and what are preferred patient populations. Once the proof of concept is established, further studies with a design relevant to clinical reality will be needed to establish the place of new devices in the treatment armoury. The clinical and research community has a large responsibility to prove or disprove the value of new therapies, in order to ensure that antihypertensive devices provide future patients with the greatest benefit and the smallest risk. copy; The Author 2017

    Fishers who rely on mangroves: Modelling and mapping the global intensity of mangrove-associated fisheries

    Get PDF
    Mangroves are critical nursery habitats for fish and invertebrates, providing livelihoods for many coastal communities. Despite their importance, there is currently no estimate of the number of fishers engaged in mangrove associated fisheries, nor on the fishing intensity associated with mangroves at a global scale. We address these gaps by developing a global model of mangrove associated fisher numbers and mangrove fishing intensity. To develop the model, we undertook a three-round Delphi process with mangrove fisheries experts to identify the key drivers of mangrove fishing intensity. We then developed a conceptual model of intensity of mangrove fishing using those factors identified both as being important and for which appropriate global data could be found or developed. These factors were non-urban population, distance to market, distance to mangroves and other fishing grounds, and storm events. By projecting this conceptual model using geospatial datasets, we were able to estimate the number and distribution of mangrove associated fishers and the intensity of fishing in mangroves. We estimate there are 4.1 million mangrove associated fishers globally, with the highest number of mangrove fishers found in Indonesia, India, Bangladesh, Myanmar, and Brazil. Mangrove fishing intensity was greatest throughout Asia, and to a lesser extent West and Central Africa, and Central and South America

    Recognize fish as food in policy discourse and development funding

    Get PDF
    The international development community is off-track from meeting targets for alleviating global malnutrition. Meanwhile, there is growing consensus across scientific disciplines that fish plays a crucial role in food and nutrition security. However, this ‘fish as food’ perspective has yet to translate into policy and development funding priorities. We argue that the traditional framing of fish as a natural resource emphasizes economic development and biodiversity conservation objectives, whereas situating fish within a food systems perspective can lead to innovative policies and investments that promote nutrition-sensitive and socially equitable capture fisheries and aquaculture. This paper highlights four pillars of research needs and policy directions toward this end. Ultimately, recognizing and working to enhance the role of fish in alleviating hunger and malnutrition can provide an additional long-term development incentive, beyond revenue generation and biodiversity conservation, for governments, international development organizations, and society more broadly to invest in the sustainability of capture fisheries and aquaculture

    Fishers who rely on mangroves: Modelling and mapping the global intensity of mangrove-associated fisheries

    Get PDF
    Mangroves are critical nursery habitats for fish and invertebrates, providing livelihoods for many coastal communities. Despite their importance, there is currently no estimate of the number of fishers engaged in mangrove associated fisheries, nor on the fishing intensity associated with mangroves at a global scale. We address these gaps by developing a global model of mangrove associated fisher numbers and mangrove fishing intensity. To develop the model, we undertook a three-round Delphi process with mangrove fisheries experts to identify the key drivers of mangrove fishing intensity. We then developed a conceptual model of intensity of mangrove fishing using those factors identified both as being important and for which appropriate global data could be found or developed. These factors were non-urban population, distance to market, distance to mangroves and other fishing grounds, and storm events. By projecting this conceptual model using geospatial datasets, we were able to estimate the number and distribution of mangrove associated fishers and the intensity of fishing in mangroves. We estimate there are 4.1 million mangrove associated fishers globally, with the highest number of mangrove fishers found in Indonesia, India, Bangladesh, Myanmar, and Brazil. Mangrove fishing intensity was greatest throughout Asia, and to a lesser extent West and Central Africa, and Central and South America

    Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore