95 research outputs found

    Clinical characteristics and outcomes of patients with acute myelogenous leukemia admitted to intensive care: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is limited epidemiologic data on patients with acute myelogenous (myeloid) leukemia (AML) requiring life-sustaining therapies in the intensive care unit (ICU). Our objectives were to describe the clinical characteristics and outcomes in critically ill AML patients.</p> <p>Methods</p> <p>This was a retrospective case-control study. Cases were defined as adult patients with a primary diagnosis of AML admitted to ICU at the University of Alberta Hospital between January 1<sup>st </sup>2002 and June 30<sup>th </sup>2008. Each case was matched by age, sex, and illness severity (ICU only) to two control groups: hospitalized AML controls, and non-AML ICU controls. Data were extracted on demographics, course of hospitalization, and clinical outcomes.</p> <p>Results</p> <p>In total, 45 AML patients with available data were admitted to ICU. Mean (SD) age was 54.8 (13.1) years and 28.9% were female. Primary diagnoses were sepsis (32.6%) and respiratory failure (37.3%). Mean (SD) APACHE II score was 30.3 (10.3), SOFA score 12.6 (4.0) with 62.2% receiving mechanical ventilation, 55.6% vasoactive therapy, and 26.7% renal replacement therapy. Crude in-hospital, 90-day and 1-year mortality was 44.4%, 51.1% and 71.1%, respectively. AML cases had significantly higher adjusted-hazards of death (HR 2.23; 95% CI, 1.38-3.60, p = 0.001) compared to both non-AML ICU controls (HR 1.69; 95% CI, 1.11-2.58, p = 0.02) and hospitalized AML controls (OR 1.0, reference variable). Factors associated with ICU mortality by univariate analysis included older age, AML subtype, higher baseline SOFA score, no change or an increase in early SOFA score, shock, vasoactive therapy and mechanical ventilation. Active chemotherapy in ICU was associated with lower mortality.</p> <p>Conclusions</p> <p>AML patients may represent a minority of all critically ill admissions; however, are not uncommonly supported in ICU. These AML patients are characterized by high illness severity, multi-organ dysfunction, and high treatment intensity and have a higher risk of death when compared with matched hospitalized AML or non-AML ICU controls. The absence of early improvement in organ failure may be a useful predictor for mortality for AML patients admitted to ICU.</p

    Burnout among chiropractic practitioners: real or imagined an exploratory study protocol

    Get PDF
    Burnout is a psychological syndrome of emotional exhaustion, depersonalization and reduced personal accomplishment that has been found to exist in a significant number of healthcare and helping professionals. It imposes a significant societal burden by shortened practitioner lifespan, decreased efficiency, negative health outcomes and poorer levels of patient care. Theoretical models suggest that it appears to be the result of a complex interaction between job resources and job demands. It may be reasonable to conclude that Chiropractic professionals experience similar vocational demands and thus experience significant levels of occupational stress and subsequent burnout. However the data on burnout within the chiropractic profession is limited. It is possible that this results in significant negative outcomes on chiropractors and their patients. Therefore, the objective of this paper is to demonstrate the need to explore burnout in chiropractic practice and offer a research protocol for a potential study

    Stability of Metabolic Correlations under Changing Environmental Conditions in Escherichia coli – A Systems Approach

    Get PDF
    Background: Biological systems adapt to changing environments by reorganizing their cellular and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underlying metabolic network. Methodology/Principal Findings: Starting from experimental data obtained by a GC-MS based high-throughput metabolic profiling technology we here develop an approach that: (1) extracts network representations from metabolic condition-dependent data by using pairwise correlations, (2) determines the sets of stable and condition-dependent correlations based on a combination of statistical significance and homogeneity tests, and (3) can identify metabolites related to the stress response, which goes beyond simple observations about the changes of metabolic concentrations. The approach was tested with Escherichia coli as a model organism observed under four different environmental stress conditions (cold stress, heat stress, oxidative stress, lactose diauxie) and control unperturbed conditions. By constructing the stable network component, which displays a scale free topology and small-world characteristics, we demonstrated that: (1) metabolite hubs in this reconstructed correlation networks are significantly enriched for those contained in biochemical networks such as EcoCyc, (2) particular components of the stable network are enriched for functionally related biochemical pathways, and (3) independently of the response scale, based on their importance in the reorganization of the correlation network a set of metabolites can be identified which represent hypothetical candidates for adjusting to a stress-specific response. Conclusions/Significance: Network-based tools allowed the identification of stress-dependent and general metabolic correlation networks. This correlation-network-based approach does not rely on major changes in concentration to identify metabolites important for stress adaptation, but rather on the changes in network properties with respect to metabolites. This should represent a useful complementary technique in addition to more classical approaches

    Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    Get PDF
    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment

    2017 update of the WSES guidelines for emergency repair of complicated abdominal wall hernias

    Get PDF
    Emergency repair of complicated abdominal wall hernias may be associated with worsen outcome and a significant rate of postoperative complications. There is no consensus on management of complicated abdominal hernias. The main matter of debate is about the use of mesh in case of intestinal resection and the type of mesh to be used. Wound infection is the most common complication encountered and represents an immense burden especially in the presence of a mesh. The recurrence rate is an important topic that influences the final outcome. A World Society of Emergency Surgery (WSES) Consensus Conference was held in Bergamo in July 2013 with the aim to define recommendations for emergency repair of abdominal wall hernias in adults. This document represents the executive summary of the consensus conference approved by a WSES expert panel. In 2016, the guidelines have been revised and updated according to the most recent available literature.Peer reviewe

    2017 update of the WSES guidelines for emergency repair of complicated abdominal wall hernias

    Get PDF
    corecore