60 research outputs found

    Effect of Fasciola hepatica proteins on the functioning of rat hepatocytes

    Get PDF
    Fasciolosis is a hepatic parasitic infection that affects many mammal species and creates a great economic and veterinary problem. Molecular mechanisms of parasite–hepatocyte interactions have not been precisely characterized yet. Therefore, the aim of the study was to investigate alterations in the metabolic activity of rat liver cells exposed to Fasciola hepatica somatic proteins. Hepatocytes were incubated with 0–1 mg/ml of fluke's somatic proteins for various periods of time. Afterward, changes in hepatocytes metabolic activity were determined with MTT and enzyme leakage tests. Hepatocytes' capacity to synthesize albumin was also investigated. It was observed that protein concentration, as well as longevity of their action, influenced metabolic activity of rat liver cells. Diminution of hepatocytes survival rate, an increase in enzyme leakage and altered synthetic capacity after treatment with parasite's proteins were reported. It is concluded that somatic proteins of F. hepatica may play an important role in liver cell damaging

    Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing

    Get PDF
    The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. Here we integrate the evolution of bioturbation into the COPSE model of global biogeochemical cycling, and compare quantitative model predictions to multiple geochemical proxies. Our results suggest that the advent of shallow burrowing in the early Cambrian contributed to a global low-oxygen state, which prevailed for ~100 million years. This impact of bioturbation on global biogeochemistry likely affected animal evolution through expanded ocean anoxia, high atmospheric CO2 levels and global warming

    A tectonically driven Ediacaran oxygenation event.

    Get PDF
    The diversification of complex animal life during the Cambrian Period (541-485.4 Ma) is thought to have been contingent on an oxygenation event sometime during ~850 to 541 Ma in the Neoproterozoic Era. Whilst abundant geochemical evidence indicates repeated intervals of ocean oxygenation during this time, the timing and magnitude of any changes in atmospheric pO₂ remain uncertain. Recent work indicates a large increase in the tectonic CO₂ degassing rate between the Neoproterozoic and Paleozoic Eras. We use a biogeochemical model to show that this increase in the total carbon and sulphur throughput of the Earth system increased the rate of organic carbon and pyrite sulphur burial and hence atmospheric pO₂. Modelled atmospheric pO₂ increases by ~50% during the Ediacaran Period (635-541 Ma), reaching ~0.25 of the present atmospheric level (PAL), broadly consistent with the estimated pO₂ > 0.1-0.25 PAL requirement of large, mobile and predatory animals during the Cambrian explosion

    Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    Get PDF
    Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball’ glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution

    Processes and patterns of oceanic nutrient limitation

    Get PDF
    Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry. © 2013 Macmillan Publishers Limited. All rights reserved

    Earth: Atmospheric Evolution of a Habitable Planet

    Full text link
    Our present-day atmosphere is often used as an analog for potentially habitable exoplanets, but Earth's atmosphere has changed dramatically throughout its 4.5 billion year history. For example, molecular oxygen is abundant in the atmosphere today but was absent on the early Earth. Meanwhile, the physical and chemical evolution of Earth's atmosphere has also resulted in major swings in surface temperature, at times resulting in extreme glaciation or warm greenhouse climates. Despite this dynamic and occasionally dramatic history, the Earth has been persistently habitable--and, in fact, inhabited--for roughly 4 billion years. Understanding Earth's momentous changes and its enduring habitability is essential as a guide to the diversity of habitable planetary environments that may exist beyond our solar system and for ultimately recognizing spectroscopic fingerprints of life elsewhere in the Universe. Here, we review long-term trends in the composition of Earth's atmosphere as it relates to both planetary habitability and inhabitation. We focus on gases that may serve as habitability markers (CO2, N2) or biosignatures (CH4, O2), especially as related to the redox evolution of the atmosphere and the coupled evolution of Earth's climate system. We emphasize that in the search for Earth-like planets we must be mindful that the example provided by the modern atmosphere merely represents a single snapshot of Earth's long-term evolution. In exploring the many former states of our own planet, we emphasize Earth's atmospheric evolution during the Archean, Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of potential atmospheric trajectories into the distant future, many millions to billions of years from now. All of these 'Alternative Earth' scenarios provide insight to the potential diversity of Earth-like, habitable, and inhabited worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook of Exoplanet

    Stepwise oxygenation of the Paleozoic atmosphere

    Get PDF
    Oxygen is essential for animal life, and while geochemical proxies have been instrumental in determining the broad evolutionary history of oxygen on Earth, much of our insight into Phanerozoic oxygen comes from biogeochemical modelling. The GEOCARBSULF model utilizes carbon and sulphur isotope records to produce the most detailed history of Phanerozoic atmospheric O2 currently available. However, its predictions for the Paleozoic disagree with geochemical proxies, and with non-isotope modelling. Here we show that GEOCARBSULF oversimplifies the geochemistry of sulphur isotope fractionation, returning unrealistic values for the O2 sourced from pyrite burial when oxygen is low. We rebuild the model from first principles, utilizing an improved numerical scheme, the latest carbon isotope data, and we replace the sulphur cycle equations in line with forwards modelling approaches. Our new model, GEOCARBSULFOR, produces a revised, highly-detailed prediction for Phanerozoic O2 that is consistent with available proxy data, and independently supports a Paleozoic Oxygenation Event, which likely contributed to the observed radiation of complex, diverse fauna at this time

    Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition

    Get PDF
    The late Ediacaran to early Cambrian interval witnessed extraordinary radiations of metazoan life. The role of the physical environment in this biological revolution, such as changes to oxygen levels and nutrient availability, has been the focus of longstanding debate. Seemingly contradictory data from geochemical redox proxies help to fuel this controversy. As an essential nutrient, nitrogen can help to resolve this impasse by establishing linkages between nutrient supply, ocean redox, and biological changes. Here we present a comprehensive N-isotope dataset from the Yangtze Basin that reveals remarkable coupling between δ¹⁵N, δ¹³C, and evolutionary events from circa 551 to 515 Ma. The results indicate that increased fixed nitrogen supply may have facilitated episodic animal radiations by reinforcing ocean oxygenation, and restricting anoxia to near, or even at the sediment–water interface. Conversely, sporadic ocean anoxic events interrupted ocean oxygenation, and may have led to extinctions of the Ediacaran biota and small shelly animals
    corecore