241 research outputs found

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Chronic widespread bodily pain is increased among individuals with history of fracture:findings from UK Biobank

    Get PDF
    Acknowledgments This work was supported by grants from the Medical Research Council, British Heart Foundation, Arthritis Research UK, National Osteoporosis Society, International Osteoporosis Foundation, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, and NIHR Musculoskeletal Biomedical Research Unit, University of Oxford. This research has been conducted using the UK Biobank Resource. Compliance with ethical standards.Peer reviewedPublisher PD

    A New Eusuchian Crocodyliform with Novel Cranial Integument and Its Significance for the Origin and Evolution of Crocodylia

    Get PDF
    Crocodyliforms were one of the most successful groups of Mesozoic tetrapods, radiating into terrestrial, semiaquatic and marine environments, while occupying numerous trophic niches, including carnivorous, insectivorous, herbivorous, and piscivorous species. Among these taxa were the enigmatic, poorly represented flat-headed crocodyliforms from the late Cretaceous of northern Africa. Here we report a new, giant crocodyliform from the early Late Cretaceous (Cenomanian) Kem Kem Formation of Morocco. Represented by a partial braincase, the taxon has an extremely long, flat skull with large jaw and craniocervical muscles. The skull roof is ridged and ornamented with a broad, rough boss surrounded by significant vascular impressions, likely forming an integumentary structure unique among crocodyliforms. Size estimates using endocranial volume indicate the specimen was very large. The taxon possesses robust laterosphenoids with laterally oriented capitate processes and isolated epipterygoids, features allying it with derived eusuchians. Phylogenetic analysis finds the taxon to be a derived eusuchian and sister taxon to Aegyptosuchus, a poorly understood, early Late Cretaceous taxon from the Bahariya formation. This clade forms the sister clade of crown-group Crocodylia, making these taxa the earliest eusuchian crocodyliforms known from Africa. These results shift phylogenetic and biogeographical hypotheses on the origin of modern crocodylians towards the circum-Tethyean region and provide important new data on eusuchian morphology and evolution

    Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli)

    Get PDF
    Macroevolutionary, palaeoecological and biomechanical analyses in deep time offer the possibility to decipher the structural constraints, ecomorphological patterns and evolutionary history of extinct groups. Here, 3D comparative biomechanical analyses of the extinct giant early amphibian group of stereospondyls together with living lissamphibians and crocodiles, shows that: i) stereospondyls had peculiar palaeoecological niches with proper bites and stress patterns very different than those of giant salamanders and crocodiles; ii) their extinction may be correlated with the appearance of neosuchians, which display morphofunctional innovations. Stereospondyls weathered the end-Permian mass extinction, re-radiated, acquired gigantic sizes and dominated (semi) aquatic ecosystems during the Triassic. Because these ecosystems are today occupied by crocodilians, and stereospondyls are extinct amphibians, their palaeobiology is a matter of an intensive debate: stereospondyls were a priori compared with putative living analogous such as giant salamanders and/or crocodilians and our new results try to close this debate.Peer ReviewedPostprint (published version

    Sources and Coverage of Medical News on Front Pages of US Newspapers

    Get PDF
    Background: Medical news that appears on newspaper front pages is intended to reach a wide audience, but how this type of medical news is prepared and distributed has not been systematically researched. We thus quantified the level of visibility achieved by front-page medical stories in the United States and analyzed their news sources. Methodology: Using the online resource Newseum, we investigated front-page newspaper coverage of four prominent medical stories, and a high-profile non-medical news story as a control, reported in the US in 2007. Two characteristics were quantified by two raters: which newspaper titles carried each target front-page story (interrater agreement, >96%; kappa, >0.92) and the news sources of each target story (interrater agreement, >94%; kappa, >0.91). National rankings of the top 200 US newspapers by audited circulation were used to quantify the extent of coverage as the proportion of the total circulation of ranked newspapers in Newseum. Findings: In total, 1630 front pages were searched. Each medical story appeared on the front pages of 85 to 117 (67.5%-78.7%) ranked newspaper titles that had a cumulative daily circulation of 23.1 to 33.4 million, or 61.8% to 88.4% of all newspapers. In contrast, the non-medical story achieved front-page coverage in 152 (99.3%) newspaper titles with a total circulation of 41.0 million, or 99.8% of all newspapers. Front-page medical stories varied in their sources, but the Washington Post, Los Angeles Times, New York Times and the Associated Press together supplied 61.7% of the total coverage of target front-page medical stories. Conclusion: Front-page coverage of medical news from different sources is more accurately revealed by analysis of circulation counts rather than of newspaper titles. Journals wishing to widen knowledge of research news and organizations with important health announcements should target at least the four dominant media organizations identified in this study

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    The Braincase of the Basal Sauropod Dinosaur Spinophorosaurus and 3D Reconstructions of the Cranial Endocast and Inner Ear

    Get PDF
    Background: Sauropod dinosaurs were the largest animals ever to walk on land, and, as a result, the evolution of their remarkable adaptations has been of great interest. The braincase is of particular interest because it houses the brain and inner ear. However, only a few studies of these structures in sauropods are available to date. Because of the phylogenetic position of Spinophorosaurus nigerensis as a basal eusauropod, the braincase has the potential to provide key evidence on the evolutionary transition relative to other dinosaurs. Methodology/Principal Findings: The only known braincase of Spinophorosaurus (‘Argiles de l'Irhazer’, Irhazer Group; Agadez region, Niger) differs significantly from those of the Jurassic sauropods examined, except potentially for Atlasaurus imelakei (Tilougguit Formation, Morocco). The basisphenoids of Spinophorosaurus and Atlasaurus bear basipterygoid processes that are comparable in being directed strongly caudally. The Spinophorosaurus specimen was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. The endocast resembles that of most other sauropods in having well-marked pontine and cerebral flexures, a large and oblong pituitary fossa, and in having the brain structure obscured by the former existence of relatively thick meninges and dural venous sinuses. The labyrinth is characterized by long and proportionally slender semicircular canals. This condition recalls, in particular, that of the basal non-sauropod sauropodomorph Massospondylus and the basal titanosauriform Giraffatitan. Conclusions/Significance: Spinophorosaurus has a moderately derived paleoneuroanatomical pattern. In contrast to what might be expected early within a lineage leading to plant-eating graviportal quadrupeds, Spinophorosaurus and other (but not all) sauropodomorphs show no reduction of the vestibular apparatus of the inner ear. This character-state is possibly a primitive retention in Spinophorosaurus, but due the scarcity of data it remains unclear whether it is also the case in the various later sauropods in which it is present or whether it has developed homoplastically in these taxa. Any interpretations remain tentative pending the more comprehensive quantitative analysis underway, but the size and morphology of the labyrinth of sauropodomorphs may be related to neck length and mobility, among other factors.The sojourns of Dr. Knoll in the Museum für Naturkunde (Berlin) were partly funded by the Alexander von Humboldt Foundation through a sponsorship of renewed research stay in Germany and by the European Community Research Infrastructure Action under the FP7 “Capacities” Program through a Synthesys grant (http://www.synthesys.info/). Dr. Knoll is currently supported by the Ramón y Cajal Program. This is a contribution to the research project CGL2009-12143, from the Ministerio de Ciencia e Innovación (Madrid), conducted by Dr. Knoll (PI), Dr. Witmer, and Dr. Schwarz-Wings. Dr. Witmer and Dr. Ridgely acknowledge funding support from the United States National Science Foundation (IBN-9601174, IBN-0343744, IOB-0517257) and the Ohio University Heritage College of Osteopathic Medicine. The Ohio Supercomputing Center also provided support.Peer reviewe

    Abnormal motor activity during anaesthesia in a dog: a case report

    Get PDF
    Seizures or convulsions that occur during anaesthesia in veterinary patients are infrequently reported in the literature. Consequently, the incidence of such events is unknown. Several drugs commonly used in clinical veterinary anaesthesia have been shown to induce epileptiform activity in both human clinical patients and experimental candidates. The present case report describes convulsions in a four-year old male Bernese mountain dog during maintenance of anaesthesia with isoflurane after premedication with acepromazine and methadone followed by co-induction with propofol and ketamine. The dog had no history of previous convulsions. The use of several sedative and anaesthetic drugs makes it difficult to find one single causative pharmaceutical

    A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: Implications for the evolution and paleobiology of titanosauria

    Get PDF
    We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian - Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla - lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) ´tongue-like´ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with ´strut-like´ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a ´ghost lineage´ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies - such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward- facing snout - that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.Fil: Martínez, RubÊn Darío. Universidad Nacional de la Patagonia; ArgentinaFil: Lamanna, Matthew C.. Carnegie Museum Of Natural History; Estados UnidosFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones Científicas y TÊcnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia"; ArgentinaFil: Ridgely, Ryan C.. Ohio University College Of Osteopathic Medicine; Estados UnidosFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Javier E.. Hospital Regional de Comodoro Rivadavia; ArgentinaFil: Vita, Javier R.. Resonancia MagnÊtica Borelli; ArgentinaFil: Witmer, Lawrence M.. Ohio University College Of Osteopathic Medicine; Estados Unido
    • …
    corecore