41 research outputs found

    Distributions of highly branched isoprenoid alkenes and other algal lipids in surface waters from East Antarctica: Further insights for biomarker-based paleo sea-ice reconstruction

    Get PDF
    The occurrence and variable abundance of certain di- and tri-unsaturated C₂₅ highly branched isoprenoid (HBI) biomarkers in Antarctic marine sediments has previously been proposed as a possible proxy measure of paleo sea-ice extent in the Southern Ocean. In the current study, we obtained 47 near-surface (ca. 0-10 m) water samples taken from locations in East Antarctica with different sea ice settings and analysed them for their HBI, sterol and fatty acid content. Sampling locations ranged from the permanently open-ocean zone (POOZ), with no seasonal sea-ice cover, the near-shore summer sea ice zone (SIZ), where sea ice remains long into the summer melt season, and the marginal ice zone (MIZ), located between the POOZ and the SIZ, and with a highly variable latitudinal sea-ice edge throughout the season. A di-unsaturated C₂₅ HBI (diene II) was only identified in surface waters from the MIZ and the SIZ, consistent with a sea-ice diatom origin for this biomarker. In contrast, a tri-unsaturated C₂₅ HBI (triene III) was detected in all samples from the POOZ, the MIZ and the SIZ, and with a stable isotopic composition (δ¹³C = -35 ± 1.5‰) consistent with a phytoplankton source. The highest concentrations of diene II and triene III were in samples from the SIZ and the MIZ, respectively, thus providing further insights into the sea-ice conditions likely favourable for their production and how their relative abundances (the II/III ratio) in underlying sediments might be better interpreted for paleo sea-ice reconstruction. In this respect, relatively high II/III might be a good indicator of extended (into summer) seasonal sea-ice cover, while lower II/III may provide a better indicator of the MIZ. However, the observation of highly variable II/III within the polynya setting of the SIZ may also have significant impacts on sedimentary values. Distributions of diatom sterols and fatty acids were also variable between the three sampling zones, but these were not as distinctive as those observed for the HBIs.10 page(s

    Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25

    Get PDF
    The presence of a di-unsaturated highly branched isoprenoid (HBI) lipid biomarker (diene II) in Southern Ocean sediments has previously been proposed as a proxy measure of palaeo Antarctic sea ice. Here we show that a source of diene II is the sympagic diatom Berkeleya adeliensis Medlin. Furthermore, the propensity for B. adeliensis to flourish in platelet ice is reflected by an offshore downward gradient in diene II concentration in >100 surface sediments from Antarctic coastal and near-coastal environments. Since platelet ice formation is strongly associated with super-cooled freshwater inflow, we further hypothesize that sedimentary diene II provides a potentially sensitive proxy indicator of landfast sea ice influenced by meltwater discharge from nearby glaciers and ice shelves, and re-examination of some previous diene II downcore records supports this hypothesis. The term IPSO25-Ice Proxy for the Southern Ocean with 25 carbon atoms-is proposed as a proxy name for diene II

    Temporal controls on silicic acid utilisation along the West Antarctic Peninsula

    Get PDF
    The impact of climatic change along the Antarctica Peninsula has been widely debated in light of atmospheric/oceanic warming and increases in glacial melt over the past half century. Particular concern exists over the impact of these changes on marine ecosystems, not only on primary producers but also on higher trophic levels. Here we present a record detailing the historical controls on the biogeochemical cycling of silicic acid [Si(OH)4] on the west Antarctica Peninsula margin, a region in which the modern phytoplankton environment is constrained by seasonal sea-ice. We demonstrate that Si(OH)4 cycling through the Holocene alternates between being primarily regulated by sea-ice or glacial discharge from the surrounding grounded ice-sheet. With further climate-driven change and melting forecast for the 21st Century, our findings document the potential for biogeochemical cycling and multi-trophic interactions along the peninsula to be increasingly regulated by glacial discharge, altering food-web interactions

    Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome

    Get PDF
    In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS

    Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea

    Get PDF
    The causes of the recent increase in Antarctic sea ice extent, characterised by large regional contrasts and decadal variations, remain unclear. In the Ross Sea, where such a sea ice increase is reported, 50% of the sea ice is produced within wind-sustained latent-heat polynyas. Combining information from marine diatom records and sea salt sodium and water isotope ice core records, we here document contrasting patterns in sea ice variations between coastal and open sea areas in Western Ross Sea over the current interglacial period. Since about 3600 years before present, an increase in the efficiency of regional latent-heat polynyas resulted in more coastal sea ice, while sea ice extent decreased overall. These past changes coincide with remarkable optima or minima in the abundances of penguins, silverfish and seal remains, confirming the high sensitivity of marine ecosystems to environmental and especially coastal sea ice conditions

    Late summer diatom biomass and community structure on and around the naturally iron-fertilised Kerguelen Plateau in the Southern Ocean

    No full text
    Analysis of the diatom assemblage during the recent KErguelen: compared study of Ocean and Plateau in Surface water (KEOPS) mission (January–February 2005), enabled a modern description of the summer bloom community over the Kerguelen Plateau in the context of the community in the surrounding high-nutrient, low-chlorophyll (HNLC) Southern Ocean waters. Net samples revealed biogeographic partitioning of certain species. Comparison of net samples with CTD-Niskin bottle samples revealed a considerable underestimation of large diatom species in the water samples. We analysed four plateau stations and one off-plateau HNLC station for individual species abundances and biomass contributions down to 150 m. The stations can be divided into two groups based on species composition and total biomass contributions, equating to high (45.6–99.4 μg C L−1) and low (2.5–25.7 μg C L−1) biomass regimes. Individual species abundances were not related to the major species biomass contributions. Repeat analyses at the bloom station, A3, and the off-plateau HNLC station, C11, revealed evolution from a Chaetoceros subgenus Hyalochaete bloom to a remnant Eucampia antarctica assemblage. In contrast the HNLC station, C11, remained dominated by Fragilariopsis pseudonana and F. kerguelensis throughout the survey. Comparison to artificial iron experiments reveals differences in the responses of Pseudo-nitzschia spp. and F. kerguelensis, which may arise in part from differences in macro-nutrient supply, in particular silicic acid availability, as well as from seasonal succession
    corecore