99 research outputs found

    CYLD Enhances Severe Listeriosis by Impairing IL-6/STAT3-Dependent Fibrin Production

    Get PDF
    The facultative intracellular bacterium Listeria monocytogenes (Lm) may cause severe infection in humans and livestock. Control of acute listeriosis is primarily dependent on innate immune responses, which are strongly regulated by NF-kappa B, and tissue protective factors including fibrin. However, molecular pathways connecting NF-kappa B and fibrin production are poorly described. Here, we investigated whether the deubiquitinating enzyme CYLD, which is an inhibitor of NF-kappa B-dependent immune responses, regulated these protective host responses in murine listeriosis. Upon high dose systemic infection, all C57BL/6 Cyld(-/-) mice survived, whereas 100% of wildtype mice succumbed due to severe liver pathology with impaired pathogen control and hemorrhage within 6 days. Upon in vitro infection with Lm, CYLD reduced NF-kappa B-dependent production of reactive oxygen species, interleukin (IL)-6 secretion, and control of bacteria in macrophages. Furthermore, Western blot analyses showed that CYLD impaired STAT3-dependent fibrin production in cultivated hepatocytes. Immunoprecipitation experiments revealed that CYLD interacted with STAT3 in the cytoplasm and strongly reduced K63-ubiquitination of STAT3 in IL-6 stimulated hepatocytes. In addition, CYLD diminished IL-6-induced STAT3 activity by reducing nuclear accumulation of phosphorylated STAT3. In vivo, CYLD also reduced hepatic STAT3 K63-ubiquitination and activation, NF-kappa B activation, IL-6 and NOX2 mRNA production as well as fibrin production in murine listeriosis. In vivo neutralization of IL-6 by anti-IL-6 antibody, STAT3 by siRNA, and fibrin by warfarin treatment, respectively, demonstrated that IL-6-induced, STAT3-mediated fibrin production significantly contributed to protection in Cyld(-/-) mice. In addition, in vivo Cyld siRNA treatment increased STAT3 phosphorylation, fibrin production, pathogen control and survival of Lm-infected WT mice illustrating that therapeutic inhibition of CYLD augments the protective NF-kappa B/IL-6/STAT3 pathway and fibrin production

    The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses

    Get PDF
    <div><p>Alveolar macrophages orchestrate pulmonary innate immunity and are essential for early immune surveillance and clearance of microorganisms in the airways. Inflammatory signaling must be sufficiently robust to promote host defense but limited enough to prevent excessive tissue injury. Macrophages in the lungs utilize multiple transcriptional and post-transcriptional mechanisms of inflammatory gene expression to delicately balance the elaboration of immune mediators. RNA terminal uridyltransferases (TUTs), including the closely homologous family members Zcchc6 (TUT7) and Zcchc11 (TUT4), have been implicated in the post-transcriptional regulation of inflammation from studies conducted <i>in vitro</i>. <i>In vivo</i>, we observed that Zcchc6 is expressed in mouse and human primary macrophages. Zcchc6-deficient mice are viable and born in Mendelian ratios and do not exhibit an observable spontaneous phenotype under basal conditions. Following an intratracheal challenge with <i>S</i>. <i>pneumoniae</i>, Zcchc6 deficiency led to a modest but significant increase in the expression of select cytokines including IL-6, CXCL1, and CXCL5. These findings were recapitulated <i>in vitro</i> whereby Zcchc6-deficient macrophages exhibited similar increases in cytokine expression due to bacterial stimulation. Although loss of Zcchc6 also led to increased neutrophil emigration to the airways during pneumonia, these responses were not sufficient to impact host defense against infection.</p></div

    Anthropogenic perturbation of the carbon fluxes from land to ocean

    Full text link
    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.Peer reviewe

    There is no such thing as ‘undisturbed’ soil and sediment sampling: sampler-induced deformation of salt marsh sediments revealed by 3D X-ray computed tomography

    Get PDF
    Purpose: Within most environmental contexts, the collection of 'undisturbed' samples is widely relied-upon in studies of soil and sediment properties and structure. However, the impact of sampler-induced disturbance is rarely acknowledged, despite the potential significance of modification to sediment structure for the robustness of data interpretation. In this study, 3D-computed X-ray microtomography (μCT) is used to evaluate and compare the disturbance imparted by four commonly-used sediment sampling methods within a coastal salt-marsh. Materials and methods: Paired sediment core samples from a restored salt-marsh at Orplands Farm, Essex, UK were collected using four common sampling methods (push, cut, hammer and gouge methods). Sampling using two different area-ratio cores resulted in a total of 16 cores that were scanned using 3D X-Ray computed tomography, to identify and evaluate sediment structural properties of samples that can be attributed to sampling method. Results and discussion: 3D qualitative analysis identifies a suite of sampling-disturbance structures including gross-scale changes to sediment integrity and substantial modification of pore-space, structure and distribution, independent of sediment strength and stiffness. Quantitative assessment of changes to pore-space and sediment density arising from the four sampling methods offer a means of direct comparison between the impact of depth-sampling methods. Considerable disturbance to samples result from use of push, hammer and auguring samplers, whilst least disturbance is found in samples recovered by cutting and advanced trimming approaches. Conclusions: It is evident that with the small-bore tubes and samplers commonly used in environmental studies, all techniques result in disturbance to sediment structure to a far greater extent than previously reported, revealed by μCT. This work identifies and evaluates for the first time the full nature, extent and significance of internal sediment disturbance arising from common sampling methods

    Maternal smoking during pregnancy and birth defects in children: a systematic review with meta-analysis

    Full text link
    corecore